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CHAPTER 1

INTRODUCTION

1.1 Motivation

Design of mechanisms and machines is of major importance in mechan-
ical design. Design techniques currently in use are generally oriented
toward design of specific small-scale mechanisms. Some assumptions made
in these techniques are often unrealistic. The increasing complexity of
mechanisms, as required by machines with automatic and programmable
action, requires general-purpose techniques for design of large-scale,
multidegree~of-freedom mechanisms.

The purpose of this research is to develop a general-purpose theory
for design optimization of mechanisms and machines. An experimental
computer code to implement the theory is developed and a number of
example problems are considered to demonstrate the wide range of |

applicability of the technique.

1.2 Existing Methods of Mechanism Synthesis

Synthesis techniques for mechanisms have generally been aimed at
designing systems, some member of which is required to either describe a
desired path or generate a function of the input. The objective in
these design situations is to determine the member lengths and other
mechanism parameters to minimize the difference between the desired and

actual path or function generated by the mechanism. The precision point




approach and its variants [1,2] have been applied, with success, for
solution of these design problems. The basic idea underlying these
approaches 1s to design the mechanism to ensure conformity, within cer-
tain tolerances, between the actual path and the desired path, at speci-
fied points on the path. The Chebyshev and least square error criteria
have been used to characterize the error.

Balancing of mechanisms and machines is another area that has re-
ceived considerable attention [3,4,5]. The mechanisms being considered
in these investigations are generally high-speed inertia variant rota-
ting machinery. Due to the inertia variant naturé of the mechanism, the

.support frame experiences large shaking forces and moments. The design
objective is to redistribute mass of links or to add counterweights to
minimize shaking forces or moments.

Synthesis of multidegree-of-freedom mechanisms has been the sub-
ject of several papers [6,7]. The synthesis technique described in
these references was essentially restricted to two-degree—of-freedom
mechanisms. Synthesis of a mechanism so that it will occupy less than
a prescribed amount of space has been studied in Ref. 8.

In'the synthesis methods considered above, constraints have gener-
ally been imposed on design variables, such as link lengths, or on gen-
eralized coordinates, such as angles between links. Constraints on
transmission angle have been extensively used. Methods for stress and
deformation constrained design of mechanisms have recently appeared in
the literature [9]. Minimum welight design is the objective of these

design schemes.



As is evident from the brief survey given in the preceding para-
graphs, most available synthesis schemes are oriented toward design
of a specific type of mechanism, to perform a specific class of tasks.
Some efforts have been made in developing synthesis schemes that are
more general than those described above [10,11,12]. The generality of

these schemes, however, is limited to a particular class of problems.

1.3 Modeling Techniques for Large-Scale
Mechanisms and Machines

Modeling techniques for large—scale dynamic mechanical systems have
been developed only in the 1970's [13]. Modeling techniques for dynamic
electronic and structural systems, on the other hand; have been avail-
able for some time. Two of the modeling methods for dynamic mechanical
systems are considered appropriate for modeling kinematic mechanical
systems. One of them, the loop closure method [14], is embodied in the
computer code IMP [15]. This modeling method has been commonly used for
modeling kinematic systems [16]. The other method, the 'constrained
multielement formulation', is the basis for computer codes ADAMS [17]
and DADS [18,19]. This modeling method involves writing equations of
motion for each individual member and then adjoining equations of con-—
straint through Lagrange multipliers. This modeling method, though not
yet used for synthesis of kinematic systems, has attractive featufes for
doing so.

1.4 Techniques Available for Design Optimization
of Large-Scale Systems

Techniques for design optimization play an important role in

kinematic design. Most methods previously employed for optimization of




structural and mechanical systems belong to the field of nonlinear
programming, in which the design problem is formulated in terms of
design vafiables that are to be selected. Optimization methods such as
the Sequentiai Uncoﬁstrained Minimization Technique (SUMT) [8] and
Optimality criteria [9],have.ﬁeen used for Kinematic synthesis.
Performance constraints;:ﬁbwever, are most naturally stated in terms of
state or response variabiés. .Ad hoc techniques have been used to reduce
- the design problem to a standard nonlinear programming problem, with
attendant limitations on genérality, analytical feasibility, and
computational efficiency.

Numerical methods used‘in optimal control and optimal design theory
[Ref. 20, Ch. 3] sharply'contrast those employed in early mechanical
system optimization. A:state'space formulation is employed that explic-
itly treats design and state variables. The state variable is generally
the solution of a matrix or differential equation, for which an adjoint
or costaté variable is defined as the solution of a related problem.

- The adjoint variable and the associated adjoint equation are used to
provide explicit dgsign sensitivity information. This sensitivity
information is reéﬁired for virtually all iterative methods of design
optimization. The state space bptimization technique has been success-
fully applied té design of structural systems. When applied to optimi-
zation of large-scale structural systems, this method compares favorably
to indirect méthods such as optimality criteria [20].

- Most mechanical design problems require the system to perform over
the range of input or control parameters. In the case of kinematic syn-

thesis of a four-bar path generator mechanism, for example, one could




consider the angular input given to the input link to be the input
parameter. At every point in the specified range of the input parameter,
dgsign constraints must be satisfied. Most kinematic synthesis problems
fall into this class, called worst case<or‘paraﬁetric 6ptima1 design.
This optimal design scheme has been applied with success to design of

structural systems and vehicle suspension systems. [Ref. 20, Ch. 5].

1.5 Scope of The Report

In light of the comments made in Sections 1.11t0.1.4, the general
conclusion can‘be drawn fhat no:general-purpose techniques have been
developed for mechanism synthesis and design. The level éf generality
implied in the term 'general purpose' is the ability of techniques to
handle large-scale mechanisms, with a variety of constraints and cost
functions imposed on the design.

In this report, a technique based on the constrained multielement
formulation is developed for modeling planar kinematic systems. The
technique is general and is capable of modeling multidegree-of-freedom
systems. Velocities and accelerations of the members and reaction
forces in joints can also be computed and constrained. A kinetostatic
force analysis, as opposed to a time response analysis, is resorted to
for computation of the reaction forces. Since the basic assumption of
the kinetostatic analysis is that the kinematics of the system are
independent of externally applied forces, the dynamic effects due to
inertia of the members are also included in the kinetostatic force

analysis.




The state space optimization technique is used to develop a general

method for design sensitivity analysis. The method allows constraints

to be imposed on functions of design and state variables. The design

sensitivity information so obtained is used in the gradient projection

method for iterative optimization.



CHAPTER 2

KINEMATIC ANALYSIS OF MECHANISMS

2.1 Introduction to the Constrained
Multielement Formulation

Before any mechanism synthesis and design schemes are considered, a
technique for kinematic analysis of mechanisms needs to be developed.
Development of a general synthesis and design procedure requires that
the analysis procedure be general in nature. Techniques used to date
have been based on writing algebraic equations for independent loops in
a mechanism. These equations typically involve relative position var-
jables of the links of the mechanism. These techniques, though adequate
for analysis of closed-loop mechanisms, are not well suited for analysis
of open-loop mechanisms.

A technique that has been very successful in modeling large-scale
open— and closed-loop mechanical systems is the constrained multielement
method [17,18]. This technique, though not yet used for kinematic
modeling of mechanisms, has attractive features for doing so. A method
for kinematic analysis of mechanisms based on this technique is devel-
oped in the following sections.

The modeling philosophy of the constrained multielement (CME) for-
mulation is to embed a local coordinate system in each link of the mech-
anism or machine. The location of this coordinate system is arbitrary,
but is often located at the center of mass. Since only planar systems

are being considered in this report, the position and orientation




of any body or link in the system can be described by the three gener-
alized coordinates Xj, yij and ©j. These quantities can be represented
by the subvector q(i), where

X
i

(1) (2.1)

As shown in Fig. 2.1, any point p on body i of the system can be
represented by coordinates Eij and nij’ conveniently measured in the
local coordinate system. Knowing the generalized coordinates for the
body, it is then possible to express the position of a typical point p
in the global coordinate system.

A mechanical system generally consists of many members, connected
by joints. These joints could be looked upon as constraints imposed on
the relative motion of connected pairs of bodies. The CME formulation
thus represents joints as constraints between bodies making up the
system. These constraints are expressed as algebraic equations invol-

ving the generalized coordinates of the two connected bodies and addi-

tional geometric variables.

2.2 Position Analysis Of Mechanisms

2.2.1 Formulation of State Equation for Position

2.2.1.1 Kinematic Equations of Constraint

Consider a general system of n bodies connected by £ independent

joints. Two types of joints (revolute and translation) are considered



A\ 4
>

17777

Figure 2.1 Definition of Generalized Coordinates for Body i
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in this report, each giving rise to two equations of constraint. These
equations of constraint express conditions that the motion of the two
connected bodies must satisfy to be compatible with the joint.

A system of n bodies in the plane has a total of 3n generalized
coordinates. However, if this system has £ independent joints, there
are 2% equations of constraint between the 3n generalized coordinates.

Thus the number of free—~degrees—of-freedom can be written as

m= 3n - 2% (2.2)
where

n = number of bodies in the system

% = number of independent joints in the system

The condition m > 0 must be satisfied by all kinematic systems.
The generalized coordinates for the entire system can be denoted by the

3n
position state vector z € R , where

(2.3)

Assuming that the system has a set of specified design variables
. v
b e R, the kinematic equations of constraint can be written as
k
d (z,b) =0 (2.4)

where
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k( b)

¢1 z,
k( b)
¢2 z,

k .

¢ (z,b) = .
¢ (z,b)
¢22 z,

k k
¢ (z,b) is the first kinematic constraint due to joint i and ¢2 (z,b)
i

is the second kinematic constraint due to joint i.

2.2.1.2 Kinematic Driving Equations

Equation 2.4 as presented in the preceding section, is a system of
2% equations in 3n variables. Since for a kinematic system 3n > 2%, Eq.
2.4 is a system of fewer equations than unknowns. To solve for z from
Eq. 2.4, m additional equations are required. These equations can be
developed by observing that the basic purpose of designing kinematic
systems is to obtain a system that transmits motion from input links to
output links. The mechanism or machine can only be given input motion
through a set of free degrees of freedom. These free degrees of freedom
can thus be specified as functions of some free parameter, or may be
specified by some relationship between the 3n state variables. Since
all the free degrees of freedom must be specified, to drive the mechan—
ism in a unique wéy, m additional driving equations of constraints

arise, in the form

d
) (z,b,a) =0 (2-5)
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where

% (z,b,a) = .

d
¢ (Z:b’a)
m

P d
o € R is a vector of input parameters, and ¢_(z,b,a) represents the
i

ith driving equation.

2.2.1.3 State Equation for Position

Combining Eqs. 2.4 and 2.5, one has 3n independent equations, which

may be written as

— —

k
é (z,b)

% (z,b,a) = =0 (2.6)

_?d(z,b,az_
Equation 2.6 is the state equation for position of the mechanism.
Specifying the design variable vector b and the input parameter vector o
makes Eq. 2.6 a system of 3n independent equations in 3n unknowns,

z € R3n. Since these equations are highly nonlinear, more than one

solution for z is possible. Conversely, for some designs and inputs,

no solution may exist.

2.2.2. Kinematic Constraint Equations
Before any techﬁique is considered for the solution of Eq. 2.6, it
is necessary to determine the explicit form of the equations constitu-—
ting this system of equations. Since kinematic equations of constraint

occur in a general form; i.e., the equations of constraint for all
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joints of the same type have the same general form, it is sufficient to
consider a typical joint of each type. Since this report considers only
revolute and translation joints, a typical joint of each type will be
treated. Driving constraints, on the other hand, do not lend them-
selves to the same general characterization. These constraints tend

to be problem dependent.

2.2.2.1 Constraint Equations for a Revolute Joint

Figure 2.2 shows the two adjacent bodies i and j, with body-fixed

coordinate systems Oixiyi and ij.y., respectively. The origins of
J3J

these reference frames are located in the global reference frame by

vectors R and R , respectively. Let point pi on body i be located by
i j 3
a body-fixed vector';;_ and point pj. on body j be located by a body
3 i
fixed vector ;-i' Points pij and pji are, in turn, connected by a

vector r + Executing a closed path from the origin of the fixed
p

reference frame yields the vector relationship.

TR+ 4T - -R =0 (2.7)
i ij P ji h

Demanding that points Pi' and p.i are coincident guarantees the
J ]
existence of a rotational joint between bodies i and j at this common

point. This is equivalent to the condition T = 0. Thus, Eq. 2.7

P
becomes

R+ -r =-R =0 (2.8)
i ij ji 3

In matrix form, Eq. 2.8 can be written as




77777 > X

Figure 2.2 Revolute Joint
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L R G

1] j i |
+ E(8) - - E(8) = (2.9)
y i |n y 3 n 0
i ij j ji
where
cos 6 -sin ©
E(B) =

sin © cos ©

is a rotation matrix from the local to global reference frame.
Expanding Eq. 2.9, the equations of constraint for the revolute

joint can be written as

¢ = x + £ cos 6 - n sin 8 - x - § cos 6§ + n sin 8 =0

X i ij i ij i j ji j ji 3j

oS =y + § . sin & + n_ cos 6' -y, - €' sin 6. - n__cos 6_ =0

y i ij i ij i k| ji k| ji J

(2.10)
In Eq. 2.10, x , vy , 8 , x , ¥y, and 6 are state variables. The
A A A 3
variables £ , n , & , and n are related to the length of the
ij ij ji ji

members and hence to the design variables.

2.2.2.2 Constraint Equations for a Translational Joint

Figure 2.3 shows two bodies connected by a translational joint.

For this type of joint, the points pi. and p__ lie on a line parallel to
J Jj1
the path of relative motion between the two bodies. These points are

located by nonzero body-fixed vectors, T and ;.i’ that are perpen—
ij 3
dicular to the line of relative motion. A scalar equation of constraint

can be written by taking the dot product of ;; with r . Since these
h| P '
two vectors are perpendicular, their dot product must vanish.
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T . T =0 (2.11)
P ij
Using Eq. 2.7 to solve for r , Eq. 2.11 becomes
P
R +1 )-®R +r ) « T =0 ' (2.12)
j ji i ij ij

Using the transformation matrix to express r and r in the global
i

reference frame, Eq. 2.12 can be written as

¢ = (U -x)W -U)+((V —-y)(V -Vv)=0 (2.13)
n i i i j i i i j
where
U =x + & cos 6 - n sin 0
i i ij i ij i
U =x +& cos 8 -n  sin 8
J J ji J ji 3
(2.14)
V =y +& s8in6 +n cos 0
i i ij i ij i

V =y + E.' sin e. + n  cos e.
3 3 ji 3 ji 3
Equation 2.13 restricts the motion of body i to be along a line that is
at a specified distance from and parallel to the line of relative motion.
The second scalar equation of constraint can be obtained by noting

that r and T mst be parallel. This is true since both of these

ij ji
vectors are perpendicular to T . In three dimensions, this condition
p
can be expressed as
T x r =0 (2.15)

ij ji
Expanding, the component perpendicular to the x-y plane is

6 = (U -x )V
6 i i j

- - - - = 2.1
yj) (Vi yi)(Uj Xj) 0 (2.16)
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Since body i is constrained by Eq. 2.13 to move parallel to r ,
P
Eq. 2.16 guarantees that body j will also move along a line parallel to
T . As in the case of the revolute joint, x , vy, 6 ,%x , y, and 6

P r 1 1 3] J J
are the state variables in the equations of constraint. Variables § ,

i
nij’ Eji’ and nji and related to the design variableé. ;
2.2.3 Solution Technique for State Equations

Constraint equations for the two typical joints considered here,
Eqs. 2.10, 2.13, and 2.16, are geometrically~non1inear, due to the pres-
ence of transcendental functions of state variables. The position
state equation is thus nonlinear and a solution technique that is appli-
cable to nonlinear equations must be employed. One of the commonly used
techniques for solution of nonlinear equations is Newton's method [21].

Consider the position state equation of Eq. 2.6 for the entire
system,

¥(z,b,a) =0
Before any attempt is made to solve this nonlinear system, variables
b and o must be specified. This is reasonable, since in most iterative
design algorithms the design variable b is estimated before the synthesis
procedure is initiated. The vector of input parameters a is generally a
part of the problem specifications. The only unknowns in Eq. 2.6 are
the state variables z. Equation 2.6 is thus a system of 3n nonlinear
equations in 3n variables and a unique solution of this system will
exist locally if the stipulations of the implicit function theorem are

satisfied; ie., if the matrix
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3¢(z,b, ) 3¢11
3z NER
J |3nx3n

is nonsingular. This condition is satisfied if the system of constraints

(2.17)

consists of no redundant joints.

The Newton method [21] initially requires that the state variable
z be estimated. The method then computes updates Az to this state to
obtain an improved value for the state. The improved approximation is

given by [21]

(i+1) (1) 1)
z =z + Az (2.18)

where i is an iteration counter, i > O,

1)

Az is the solution of

%‘1 (zi,b,0) azt = - #(zi,b,q) (2.19)
Z

and the matrix [84/9z] is called the Jacobian matrix of the system.

VFor large mechanisms, the system of Eq. 2.6 can be quite large,
giving rise to a large system of linear equations in Eq. 2.19. Examin-
ing the kinematic constraint equations for the two types of joints, Egs.
2.10, 2.13 and 2.16, it can be concluded that these pairs of constraint
equations involve only the state variables of the two bodies that they
connect. These equations are thus weakly coupled and the Jacobian
matrix in the left-hand side of Eq. 2.19 is highly sparse. Efficient
sparse matrix codes [22] can thus be used for solution of Eq. 2.19.

Repeated solution of systems of equations similar to Eq. 2.19 are

required very often in the following chapters. To perform these
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computations efficiently, the sparse matrix code initially does a
symbolic LU factorization of the coefficient matrix. Subsequent
solutions of linear systems with the same coefficient matrix, but with
different right-hand gides, can be carried out very efficiently.

Since mechanisms are being synthesized to perform over a range of
input parameters o, solution of the state equations would be required at
specific values of a. The process of obtaining the solution of the
position state equation for a specified value of o can be repeated to
obtain the solution for a desired sequence of input variables 09. The

numerical efficiency of such a sequence of calculations is very good

j+l k| J
if o is close to o , since z(a ) serves as a good starting estimate
j+ j+i h|
in the computation of z(o Y. If, however, o and o are not close,

j k|
then an update 6z(aq) to z(o ) is required to produce a reasonable
estimate for this computation. One such update can be obtained by

linearizing the position state equation of Eq. 2.6, keeping b fixed.

8¢(z,b,aJ) Gz(aj) + Bé(z,b,aj) 8q = 0
oz sa
or
k| h|
80(z,b,0 ) sp(ody = - 2¥zbya) 5 (2.20)
oz Ja
where 8a = aJ+1 - 09.

j+1
An improved estimate for z(a ) can thus be written as
o J+1 3 3 _
z (o )=2z(a)+ 8z(a) (2.21)
where SZ(aj) is the solution of Eq. 2.20. Equation 2.20 has the same
coefficient matrix as Eq. 2.19, so its numerical solution is quite

efficient.
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2.3 Velocity Analysis Of Mechanisms

Most mechanisms are driven by input sources that give input links
of the mechanism finite velocity. It is then necessary to determine
velocities of the remaining links in the mechanism, during motion of the
mechanism, over the prescribed range of inputs.

The state equation for the mechanism, Eq. 2.6, is required to hold
for all time. It can, therefore, be differentiated with reépect to time
to obtain

&(z,b,0) = 3"(:"”0‘) z + 34’(;»"’“) a=0 (2.22)
¥4 a

QaIQ-
-t

The above equation can be rewritten as

39(z,b, )], o - 3%(z,b,0) (2.23)
8z R

. 3n
where 2 e R is the vector of generalized velocities of members of the

system.

Equation 2.23 is the velocity state equation. This equation is
linear in velocities and has the same coefficient matrix as Eq. 2.19.
As stated in section 2.2.3, this matrix is sparse and its symbolically
factorized LU form has been determined and sto;ed. The solution of Eq.
2.23 is thus the same as solving Eq. 2.19, with a different right-~hand
side. The solution of this equation is thus very efficient.

The components of the vector on the right side of Eq. 2.23 are not
so obvious. Time does not explicitly appear in the kinematic coﬁstraint
equations. However, in the driving equations, the input parameter o

could be given as an explicit function of time. The partial derivative
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of Eq. 2.6 with respect to time can be written as
k
3% (z,b) o
. Ba .
9%(z,b,a) o = (2.24)
aa d .
3% (z,b, ) a
Ja
k
Since the kinematic constraints ¢ = 0 do not depend explicitly on a,
Eq. 2.24 can be rewritten as
. 0
99(z,b, o) o = (2.25)
da d '
3% (z,b,q) .
da o

P
where oo € R is the vector of first time derivative of input parameters.
d
The matrix 99 (z,b,a) in Eq. 2.25 depends on the form of the driving

Ja
constraints, so it will generally be problem dependent.

2.4 Acceleration Analysis of Mechanisms

Whenever a velocity input is supplied to a mechanism, some links
experience accelerations. This is true even if the inputs to the
mechanism occur at constant velocity. Computation of accelerations is
important, since the forces experienced by links in the mechanism depend
directly on acceleration.

As noted in Section 2.3, the position state equations of Eq. 2.6
are required to hold over the entire range of inputs, so the velocity
state equation of Eq. 2.23 can be differentiated once again with respect

to time to obtain,
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) ) .
4 oz,p,0 [3%_3__1] _B_E’i(_b_l] Q=0
dat2 oz 9z 9z

(2.26)
Equation 2.26 can be written as
E@(z,b,a)]z - _ls [SQ(z,b,a) 2|zl - a (2.27)
9z oz 0z
where
Q= 9 [?@(z,b,a) & ; + 9%(z,b,® o
oz da da.

o € Rp is the vector of second-time derivatives of input parameters
and ; € R3n is the vector of generalized accelerations.

Equation 2.27 is the acceleration state equation. This is a system
of linear equations with the same coefficient matrix as Eq. 2.19. All
the desirable properties of this coefficient matrix, as stated in
section 2.3, still hold. The solution of Eq. 2.27 is thus efficiént.

The right-hand side of Eq. 2.27 involQes ;, which requires that the
velocity state equation of Eq. 2.23 be solved before Eq. 2.27 can be
solved. The second term in the right side of Eq. 2.27 involves

derivatives of constraints with respect to time. Differentiating Eq.

2.25 with respect to time gives

— —
0
Q= (2.28)
d d
) 9% (z,b,a) ,{, 9% (z,b,q)
3o al o + ' o
[ da da - _



CHAPTER 3

FORCE ANALYSIS OF MECHANISMS

For realistic design of mechanisms, it is necessary to impose

stress constraints on links and force constraints on joint bearings.

This requires that a force equation be derived to express internal

forces on links, in terms of the extérnally applied forces and system

velocities and accelerations. The applied forces could be forces due
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to gravity, spring damper actuator forces, or forces from other external

sources. Two approaches are taken to arrive at the force equations.

is also shown that these two approaches essentially lead to the same

equations for equilibrium.

3.1 Equilibrium Equation from the Principle

of Virtual Work

It

Figure 3.1 shows a body with a body-fixed coordinate system Oixiyi.

An externally applied force f;k and an external moment T;

body. The point of application of force f;k is located by the vector

act on this

§;k in the body-fixed coordinate system. The virtual work of all

external forces acting on body i can be written as [23]

i M,

N
Sw =) F o SR +S )+ ) T =« &0
- S | et S 8 1 i

where

N = Total number of forces acting on body i.
i

(3.1)
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Figure 3.1 Force Acting on Body i
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M = Total number of moments acting on body i
i

Since R , §'k, and 5; are functions of the position state variables z,
i i

Eq. 3.1 can be written as

Ny 3R 3s Mpo 36
Sw = Yy F . i, ik gz + ) T . 1 4,
i k=1 ik 9z oz =1 12 T3z
(3.2)
The virtual work for a system of n bodies can then be written as
n
Moo= ) &w (3.3)
i=1] 1

Since the state equations for position of Eq. 2.6 are a system of
workless constraints, the principle of virtual work [23] requires that
W of Eq. 3.3 be zero, for all virtual displacements that are consistent
with the constraints. These virtual displacments are all &z

satisfying.

) =i:i’_‘1i‘az =0 (3.4)
9z ‘

where ¢ = ¢(z,b,a).
3n
Farkas Lemma [20] now guarantees the existence of a vector p€ R

of multipliers such that
T
W - uéd=20 (3.5)

3n
for all 6z e R . Substituting from Egqs. 3.2, 3.3, and 3.4 into

Eq. 3.5, one has
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- n N 3R 3s M 36 T
) ] OF . iy dk)+ VT, id-yu 3%\¢& =0
. i=1 k=1 ik oz oz =1 1% 3z 3z
(3.6)

3n -
which must hold for all 8z € R . Since 8z is arbitrary in Eq. 3.6,

each of its components can be varied independently, to obtain the matrix

equation
— T
n | N R 38 M; 30 T
Yl DOF .o 14 ik o+ "f.i_(afb)u_—.o
i=1 | k=1 ik z 0z =1 if 3z 3z
(3.7)
) Equation 3.7 can be rewritten in the form
. T
(iqi) =" 3.8)
3z
where
— _ T
n | N R 35 My 36
H=](¢ I F . iy dk)+ ) T . i (3.9)
i=1 }k=1 ik oz oz =1 12 T3z

Since the coefficient matrix of Eq. 3.8 isvthe transpose of the Jacobian
matrix of Eq. 2.19, this linear system is guaranteed to have a unique
solution. This Jacobian matrix, as stated in Section 2.2.3, has already
been symbolically factored and stored. Solving Eq. 3.8 is thus the same
- as solving Eq. 2.19, but with a transposed coefficient matrix and a
different right-hand side. The solution of Eq. 3.8 is thus very

efficient.




28

3.2 Force Equations From Lagrange's
Equations of Motion

Lagrange's equations of motion for a dynamic system can be applied
as force equations for kinematic systems. Considering Lagrange's

equations for a general constrained mechanical system [23],

r 29
4 (3T )\ [ N+ ] ow P o) +(Q)
dt R 3z 2=1 L 5 k pe k o
9z k k
k
k = 1,.0.,3[1 (3010)
where
T = kinetic energy of the system
Q) = nonconservative generalized force corresponding to the kth
nc
generalized coordinate
(Qk) = conservative generalized force corresponding to the kth
c
generalized coordinate
r = total number of constraints on the system, in the present
context r = 3n
U4 = vector of time-dependent Lagrange multipliers

In this form, Lagrange's equations are a system of 3n equations
in 3n zk's and 3n ui's. The13n equations of constraint have also to be
considered along with Eq. 3.10, to solve for the 6n unknowns (3n zk's +
3n ui's). However, since the 3n equations of constraint have already

been solved for 3n zk's, Eq. 3.10 has only 3n ui's as unknowns. The
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generalized velocities and accelerations for the system have already
been determined. Hence, the first term in Eq. 3.10 is a known quantity.
Since the kinetic energy of the system does not directly depend on the
generalized coordinates, the second term in Eq. 3.10 is zero. Equation
3.10 can thus be rewritten as

3n

3o
Low [ 2)=@) +(Q) - 4 [N\ p_ . 3m

=1 2\, k nc ke dt | .

k 9z

k
(3.11)

The right-hand side of Eq. 3.11 may be written as
Q) =) +(Q) -d [oT (3.12)
kg Qk nc Qk c dt | .
azk

where
(Q ) 1is the total generalized forces corresponding to the gener-~
s

ized coordinate zk.

Using Eq. 3.12, Eq. 3.11 can be written as

3n Y
1w e (Qk) ., k=1,.00,3n (3.13)

=1 L s
azk

Expressing Eq. 3.13 as a matrix equation, gives

T

od
— ] u=¢6 (3.14)
9z

where

G is the vector of (Qk) s k=1,...,3n
s

The force equation obtained from the Lagrange equations of

motion, Eq. 3.14, and the equilibrium equation obtained from the
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principle of virtual work, Eq. 3.8, are of the same form. However, the
right side of Eq. 3.14 includes dynamic effects. These dynamic effects
include D'Alembert's forces and moments and forces and torques due to
spring dampers. For mechanisms being acted upon‘by static forces only,
it is possible to show that the right side of Eq. 3.8 and 3.14 are
equivalent.

The kinetic energy of the system can be written as

3n « 2 '
T = z m (z) (3.15)
k=1 k k
where
mk = mass of body i if

k={31-2,31-1|1<i<n} -

mass moment of inertia of body 1 if
k=31 ,1<1i¢<n
Substituting kinetic energy T from Eq. 3.15 into the third term of

Eq. 3.11 gives

d /9T \= d mz =mnz (3.16)
dt . dt k k k k
sz

The third term in Eq. 3.11, depending on index k, is thus D'Alemberts
force or moment. This term can be denoted by a generalized force term

(Qk) . The right side of Eq. 3.11 can thus be written as
D

@) = {w)
K k

s

+(@Q) -@)} (3.17)
k k

nc c D
Consider the mechanical system being acted upon by a system of =
forces F-k and moments T;l. The generalized forces due to this force
i

system can be directly written as [24]
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N

n i_ 3? Mi_ 3_9-
Q) = J | YF +« 42+ § T . i (3.18)
. kg 4=1 [g=1 12 3z =1 12 azk
k

where P is the vector locating the point of application of force F

in the ziobal reference frame. H
Since the generalized coordinates being considered in Eq. 3.11 are

tﬁe same as those in Eq. 3.18, the corresponding generalized forces can

be equated; i.e.,

(Qk) = (Qk)

s

- (Q) (3.19)
k

F D

From Fig. 3.1, ?;z can be denoted as
P =R +5S (3.20)

Substituting for the right side of Eq. 3.19 from Eq. 3.18 gives

n [Ny 3R +s )\ Mi_ 30
kg i=1 {g=1. i% "““azk g=1 12 _azk‘ k p

Writing the above equation in vector form, one has

n | N aR+s )\ Mi_ 30 |
¢-1 |1 Fu"<—s§1—z>+g§1 Tt (@ 32D

By directly comparing Eqs. 3.9 and 3.22, it can be seen that the
right sides of Eqs. 3.8 and 3.14 differ by the term (G)D. Since (G)D
corresponds to the D'Alembert forces or moments, for static mechanisms,
Eqs. 3.8 and 3.14 are completely equivalent. For mechanisms with

dynamic effects, however, only Eq. 3.14 is valid.
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3.3 Relating Lagrange Multipliers to Joint Reactions

The solution of Eq. 3.14 is the vector of Lagrange multipliers u.
To determine joint reactions, and the subsequent forces in the members,
it is neéessary to relate these Lagrange multipliers to the joint reac-
tion forces. A method used in Ref. 13 will be used here to develop
relationships between the Lagrange multipliers and joint reaction
forces.

Consider a mechanism with n bodies and £ independent joints, with
the state equations for position given by Eq. 2.6. For a typical joint

in the mechanism, the equations of constraint are

¢ =0
T
(3.23)
¢ =0
r+l
In differential form, Eq. 3.23 can be written as
3n 3¢

s8¢ = ) T §z
r 4=1 3z 1

i (3.24)

3n 3¢

8¢ - z r+l  §5
r+] i=1 3z i

If this joint were to be 'broken', the equations of constraint of
Eq. 3.23 would no longer hold. However, if the defects (violations) in

constraint equations are given by 84 and &d L respectively, then the
r r+

following conditions hold

s6  + 8d =0
r r

(3.25)
8¢ + &d =0
r+l1 T+l
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The displacements &d and 6dr+1 are functions of the generalized
r

coordinates and can be written, s

3n 99 3n :
6 =- ) resz = ) ¢ Sz (3.26)
r i=1 23z i 3j=1 1i,r 1
i.
3n 3¢ 3n
§d =- ) +l 5z = J ¢ 8z (3.27)
r+l i=1 9z i §=1 1,r+l i
i
where
c and ¢ are functions of the generalized coordinates.
i,r i,r+l

The virtual work of the joint reactions, R and Rr+1 in the direc-
T

tion of d and d , respectively, can be written as

r r+l1
W =R G686 +R éd (3.28)
k r r r+l r+l
where
Joint reactions R and R can be either forces or moments, and

r r+l
k is the number of the joint that has been 'broken'.

If each joint and driving constraint in the system is 'broken', the
virtual work of the reaction forces is given by
L 2%+tm 3n
W = Y &w + J RS = ) RG& (3.29)
R k=1 k p=2#41 P P r=1 T T
where p is the index of the driving constraint. Using Eq. 3.25,
Eq. 3.29 can be written as
3n
M =-) R &8¢ (3.30)
R r=1 r r
Substituting from Eq. 3.24,
3n

M = -
R iz

3n 9
)} R _E'_Gz (3.31)

1 r=1 ¥ 23z i




34

The virtual work of the external and dynamic forces can be expressed
in the form

3n
6w=
P

i)S Gzi (3.32)
i=1

th
where (Q')S is the generalized force associated with the i  generalized
i

coordinate. Since the joints are considered broken, the equations of

constraint of Eq. 2.6 can be igndred. Hence, 6z 1is arbitrary and

is r=1 r 3z

i
independent. Setting the total virtual work to zero, GWR + GWE = 0,
for all 6z gives
3n 3¢
Q) =) R _T i=1,.00,30 (3.33)

In matrix form, Eq. 3.33 becomes

T
_3}1 R= G ‘ “(3.34)
9z

where
R = vector of reaction forces R and
r
G = vector of generalized forces

Comparing Eqs. 3.34 and 3.14, it can be concluded that

R = p (3.35)

Thus, the Lagrange multipliers, computed as a solution of Eq. 3.14, are
the reaction forces or moments in the joints or due to the driving con-
straints. The definition of joint reaction forces Ri, however, depends
upon the definition of the constraint defects Gdi.

Consider now the two typical joints described in Chapter 2. The

joint reactions in the revolute joint are the forces in the global X
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and Y direction respectively. For the translational joint, the joint
reactions are the moment in the joint and a force acting normal to the
line of translation. It still needs to be shown that the vector of

reactions'iiactually represents the above-mentioned reaction forces.

3.3.1 Reaction Forces in Revolute Joint
Considering a revolute joint k that connects body i and body j,

Egqs. 2.7 can be rewritten as

(r) =R +* -R -T (3.36)
Pk j ji i ij/k

The vector r can be written in terms of its x and y components,
P

r and r as

To derive the equations of constraint for the revolute joint, the

condition r = 0 was used to get
P - -
r [
_ Px X
(r) = = - =0 (3.37)
pk |r ¢
p
Yk L Y_k

In differential form, when ér # 0,
p

-8r 8¢

Px X

= (3.38)

-8r S¢

P
L Yk L %J k

Equation 3.38 implies that for a 'broken' revolute joint, the variation
of the x and y constraint equations represents the negative of the defect

along the X and Y axes, respectively. From Eqs. 3.24 and 3.38,
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&d

n
~
(o]

2]
~

(3.39)
r P,k

éd

L]
—~
(=]
H
~

(3.40) ”
r+l. P. k

where index r corresponds to the index of first constraint equation, due
to revolute joint k.

From Egqs. 3.39 and 3.40, it can be concluded that the Lagrange
multipliers corresponding to the two equations of constraint of a

revolute joint are the x and y reactions in the revolute joint.

3.3.2 Reaction Forces in Translational Joint

To derive the reaction forces for the translational joint, a
variation of the procedure derived in Section 3.3 is used. Since the -
two equations of comstraint for any joint are independent, instead of
breaking one joint at a time, only one constraint condition for the
joint is broken at a time. The unbroken constraint is thus still
valid.

Consider the second equation of constraint for the translational

joint, given by Eq. 2.15 as

= (U vV - - (V - U
¢e ( i-xi)( 3 yj) ( . yi)( j-Xj)

In differential form, this is
§¢ = (8U =8x YV -y ) + (U = )(&V -8y )
] i 1 373 i1 i 3
- (8V -8 U - (V - 8U -6 3.41
( s yi)( j-Xj) ( ‘ yi)( 3 Xj) ( )

Substituting the differential form of Ui, Uj, Vi, and Vj from Eq. 2.14

into Eq. 3.41 gives -
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§¢ = {~(& sin® +n  cos 6 )(E sin & + n cos 0 )
) ij i ij i ji j ji j

(£ cos® -n sin®)(E cos ® - n sin O )}
ij i ij i ji k| ji j

x (86 - 66 ) (3.42)
i 3
Equation 3.42 can be written as
8¢ =c¢ (86 - 86 ) (3.43)
0 eij i j
where ce represents the term in curly brackets in Eq. 3.42.

ij
Thus the condition ¢e = 0 constrains relative rotation of bodies i and j.
With

§¢ + & =0
¢6 0

as in Eq. 3.25,

6d =-c¢ (86 - 89 )

0 )
ij i. j

which is proportional to a virtual relative rotation of bodies i and j.

This shows that

ueéde = —uece (66 - 80 )
ij *t J

so uece is the reaction torque acting between bodies i and j, due to a
ij

translational joint.




38

Consider now the first equation of constraint for the translational
joint, given by Eq. 2.13 as

¢ = (U -x (U
O |

U+ =y ) V)
n i i i

i j J

In differential form, this is

§¢ = (8U =6x (U -U ) + (U =x )(8U -8U )
n i i i j ii i3

- (8V =8y Y)(V =V ) + (V -y )(8V =6V ) (3.45)
i 104 i7i i 3

Substituting the differentidl forms for Ui, v

» V_ and V from Eq. 2.14
j i

]
into Eq. 3.45 gives

8¢ = [-(V -y )86 ](x."X.) + [(U_—x_)GS.](y.-y.)
n R SRS S S i1 3 13

+ [(U -x )](sx ~8x ) + [V -y J(8y -8y )
i i i i i I

(V-y)(E «cos ® +n sin 6 )80
i i ji j ji 3j i

- (g cos ® -n .fsin ei)(g

sin 8 + n cos 0 )88
ij i ij i i i° i

ij i i

ij

+ (U -x )(§ sin 8 + n cos 6 )é&e
i i ij i ij i

J

(¢ sin 8 +n . cos 6 )(E cos 6 - n  sin 6 )86
ij i ij i 31 k| ji i 3

The above expression can further be simplified to

8¢ = [~(V -y )60 - -x )80 -
¢n [ (Vi yi) i](xi Xj) + [(Ui xi) j](yi Yj)

+ |U-x [(6x -86x ) + |V - (8y -8y )
v, == 1¢ox, 5 v,y 1oy, v,
+ {(E sin® +n cos 6 )(E cos ® -n sin 6 )
ij i ij i ji j ji j

sin 6 + n cos © )}(56 -86 )
i ij i i j

J J

- (& cos 6 - n sin 6 )(£
i i ij i ij

ij

(3.46)
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Since each of the two equations of constraint for this joint are being
'broken' one at a time, the second equation of constraint for this joint,
Eq. 2.16, is valid here. From Eq. 3.43, this implies
§¢ =-¢ (66 =806 ) =0 (3.47)
6 8 i 3

ij
Coefficient c has to be nonzero to get a nontrivial constraint

ij
equation. Equation 3.27 thus implies

(66 -86 ) =0 (3.48)
i 3

Substituting Eq. 3.48 into Eq. 3.46 gives

86 = [-(V -y )88 J(x = ) + [(U —=x )86 J(y -y )
n i°4 i i ] i i 3 1]

- §x -8 - Sy -8 3.49
+[U1 "1]("1 xj)+[vi yi]( v, yj> (3.49)

To develop an interpretation of Eq. 3.49, consider Fig. 2.3

again. Write a unit vector E'along T as

1

n= — {(U= )T+ (V-y)T} (3.50)
T i i i i
1j
Since ¢e is still a valid constraint, m is also parallel tor . The
ji
projection of the position vectors of the body-fixed coordinate systems

of bodies i and j along n can be expressed by n and n , respectively as,
i

n =n <R C(3.51)
i i :

n =n * R (3.52)
h| h|

~Denote n as

n=nI+nd (3.53)
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where

=}
]

@ -x )/[F__|
i i ij

=}
"

v -y )/|r_|
i i ij

In differential form, Eqs. 3.51 and 3.52 can be written as

dn =8nx +ndx + my +n by (3.54)
i 1'i 1 i 2°1 24

Gn. =6n x +n 6x + &n y +n Gy. (3.55)
h| 1] 1] 2] 2]

The virtual displacement of body i relative to body j along the
direction of vector m can be expressed as

n - 6n = S (x-x)+ 6n (y -y )
i h| 1 i ] 2 i j

+ n (6x
1 i

- & ) +n (8y -6 ) (3.56)
i 2 i

Observing that |r | is invariant under a rotation, the differential
i;

forms of n1 and n2 can be written as

v -y )
&n = - 1 1 86 (3'57)
1 - i
r
7,
(g —x )
n =- i 86 (3.58)
2 i
r
7,

Substituting 6n1, 6n2 and 86 from Eqs. 3.57, 3.58 and 3.48,
i

respectively, into Eq. 3.56 gives



én - 6n = 1 {[—(V ~y )88 ](x -x )
i 1 i i j

S EE :
Irijl
' U -x )60 - U -x |(8x -6
+ [( . xi> j](yi yj) + [ ) "1]( %, xj)
— 8y -6 3.59
+ [Vi yi]( v, yj)} (3.59)

Comparing Eqs. 3.49 and 3.59 gives

§¢ =|r |(én = én) (3.60)
n ij i i

Rewrite Eq. 3.60 as

§¢ =c¢ (n_ - én ) (3.61)
n 0 i j
ij
where ¢ = |r |. Thus the condition ¢ = O constraint relative
nij ij n

translation of bodies i and j in the direction n.
With

§6 +6d =0
n n

as in Eq. 3.25,

8 =-¢ (8n -6n )
n nij i 3

is proportional to a normal virtual relative displacement of bodies i

and j. This shows that

-4y 8 =-u ¢ (n - 6n )
n n n nij i j
SO u cC is the normal reaction force acting between bodies i and j,
nn
i3

due to a translational joint.
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CHAPTER 4

OPTIMAL DESIGN OF MECHANISMS

4.1 Introduction

Chapters 2 and 3 providé the theory necessary to compute the
kinematics of the mechanism and the forces acting on the links of the
mechanism. It should, therefore, be possible to put design constraints
(bounds) directly on these variables or on functions of these variables.
Also, it should be possible to make extreme any of the state variables
or their functions, subject to constraints.

Most extreme algorithms used require that explicit derivatives,
with respect to design variables, of the cost and constraint functions
be provided. Computing derivatives of functions involving only design
variables is easy. However, for functions involving state variables,
the dependence on design arises indirectly, through the state equation.
Derivative computation of such functions is thus not as simple as that
for explicit functions of design variables. An adjoint variable tech-
nique that has been used for design sensitivity analysis of structural

system [20], is used in this chapter for design sensitivity analysis of

mechanisms.,

4.2 Statement of the Optimal Design Problem

4.2.1 Statement of Continuous Optimization Problem
A general class of optimal design problems can be stated as:

S
Find a design b R to minimize the cost function
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v =9y (b) (4.1)
0 0

subject to State Equations;
(A.1) Position State Equation of Eq. 2.6
®(z,b,a) =0 ‘(4-2)
(A.2) Velocity State Equation of Eq. 2.23

[aep(z,b,a) s .- 30(z,0,0) & (4.3).
9z o |

(A.3) Acceleration State Equation of Eq. 2.27

'l:aé(z,bs"‘)]z __1s I:aé(z,b,a) z.]z -Q
T 8z Pz [T ez

(A.4) Force Equation of Eq. 3.14
T
8<I>(z,b,<x) B = G (4.5)
oz
and Composite Design Constraints;
(B.1) Inequality Constraints

qa(z,z,z,u,b) <0, i=1,eee,p (4.6)

(B.2) Equality Constraints

]

u;(z,z,z,u,b) =0, i=p+ l,.ee,p+ q 4.7)

Equations 4.1 to 4.7 define a general optimal design problem. Any
type of design constraint can be treated in this formulation, as long as
it can be put in a form such as Eqs. 4.6 or 4.7. The representation of
the cost function in the form of Eq. 4.1 does not restrict the technique
from being applied to cost functions involving state variables. An
upper bound technique [20] that is used in such cases is now illustrated

-~

for a general function db(z,z,z,u,b), the maximum value of which is
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required to be minimized, over a specified range of input parameters a.

Thus,

- -~ ae
L ]

min ¢ min {max P (z,z,z,u,b)} (4.8)
b 0 b a O

The above formulation of the cost function is natural for kinematic
optimization. Since state variables take on different values over the
entire range of input parameters, it is natural to minimize the maximum
value of functions of these variables.

Equation 4.8 represents a mini-max problem [20] and is not simple
to deal with directly. A scheme commonly employed is to introduce an
artificial design variable bS+1 to be an upper bound of ;0(2,;,;,u,b).

Therefore, the minimization problem in Eq. 4.8 can be written as

min ¢y = b (4.9)
0 S+1

subject to the additional constraints

~ 3

(i) wl(z,;,z,u,b) = {mzx wo(z,;,z,u,b)} - bS+1 <0 (4.10)

(ii) State Equations and other design constraints.
The minimization problem, as stated in Eqs. 4.9 and 4,10, amounts to
generating a minimizing sequence of upper bounds of the function ;0.

Composite design constraints in the form of Eqs. 4.6 and 4.7 are
required to hold over the entire range of specified input parameters.
Such constraints are called parametric constraints. Techniques for
making cost functions extreme which are subject to parametric constraints
have been developed earlier [25]. Since these techniques require a con-

siderable amount of additional computation, a simpler approximate tech-

nique is resorted to. The range of input parameters o is discretized
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into a set of grid points aj, j = 1,0005T The composite design
constraints are then required to hold at every point on this grid.
4,2,2 Statement of Discretized Optimal
Design Problem
The optimal design problem, with a grid imposed on the range of the
input parameters, can be stated as follows:

s
Find a design b R to minimize the cost function

v

b ' 4.11
0 wo( ) (4.11)

subject to State Equations;

(A.1) Position State Equations of Eq. 2.6

h| 3 ‘
@(z ,b,a ) =0 s j = l,oou,T (4.12)
where T = number of grid points on the range of the input parameters.

(A.2) Velocity State Equation of Eq. 2.23

0z a

|:3<I>(zj ,b,aj)] JE T U I I § =Lyt (813

(A.3) Acceleration State Equation of Eq. 2.27

[a¢(zj,b,aj)] ;j __3 [8¢(zj,b,aj) ;j] ;j - J = lyeee,T

oz dz oz
(4.14)
(A.4) Force Equation of Eq. 3.14
i iy |IT
[E?ETP_?_)_] W= J = Lyeenst (4.15)
~ z

and Composite Design Constraints;

(B.1) 1Inequality Constraints

wi(zj,;j,zJ,uJ,b) <0, 1= 1,..5,p, 3 = 1lyeee,t (4.16)
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(B.2) Equality Constraints

iedioj _ ,
IP,(Z sZ 32 U ’b) = 0, 1= P+1,--°,P+q, = l:"°’T
1

(4.17)

4.3 Design Sensitivity Analysis

As noted in the introduction to this chapter, all design
optimization algorithms require that derivatives of cost and constraint
funétions, with respect to design variables, be provided. Having stated
the optimal design problem, it is now possible to proceed to deriving
- the derivatives of the cost and constraint functions. This derivation
is restricted to the discretized optimal design problem.

The first variation of the cost function of Eq. 4.11 can be written

simply as

awo(b) 8 OTa (4.18)
= b= % b .
0 T ‘

Since the cost function can always be reduced to a function of design

variables by the method explained in Section 4.2.1, the sensitivity of

the cost function can very simply be written in the form of Eq. 4.18.
The first variation of the composite design constraint can be

written as

.T .
i 9 9 . 2 3y,
) . ¢i 8z + ll)i 8z + lpi 8z + lpl Su
9z . .
9z 9z o
awi .
+ &b R i=1,.0.,ptq , J=1,60e,1
ab '
J

(4.19)
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Since Eq. 4.19 is valid for equality and inequality constraints, the
index i runs from 1 to (p+q). In vector form, Eq. 4.19 can be rewritten

as

8z
ij 3 ) d ) 8z )
sl ][ 2% ) ) l ) I 17 N

9z . . l au . 9b

» 9z 9z j Sz J
Su
L 1]

i=1,...,pHq , J =l,eee,T (4.20)

Since the state variables are functions of the design, it is

‘required that the variations of the state variables in Eq. 4.20 be

written in terms of variations in design. The objective is then to

write Eq. 4.20 as

T
ij ij
Sy =4 &b (4.21)
ij th
where £ is the design sensitivity vector of the 1 constraint at the

th j
h| grid point a .

Observing that the state equations couple the design and state
variables, the first variation of the four state equations, Eqs. 4.12,

4.13, 4.14, and 4.15, can be written as

32} 8z + [32) 8by =0 (4.22)
oz 9b
j
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= “%__[_;E;E’Gz—%s[_g?%db (4.23)
VA a [o

9z
-3l [(22\zf 2 &b - 39)5 -(39) &b (4.24)
3537[(3'2)2]2 (sz w7
i
5 | [oey 30\ 2\"
S N 8z + 3 s
9z (az) . i 2 (5§> BT (52) ' .
i
(4.25)
- (_?E)sz+ 36 a;+<_'°’£>6z+(fﬁ)ab
z . - db
0z 9z j

Moving all terms in Eqs. 4.22 through 4.25 involving &b to the right

side, this system of equations can be written in matrix form as




q9

al,o
oo
~—r”
|
r—
N
e‘n
[ {sd
S’
—
|.o
(a1 Ka°d
|

[=(

ze
o€

H_MW
e

-— -

ne

zZ9

_
_
|
z¢

5€

@- 0 @A

ze |

AT [ B mhzm.mlmlm“.+
N.T. Aﬂmﬁd e mT.Aem e| e

|
T
_|

|

|

|

(%) |
|

|

|

|

|

|
|
0 |
|
"AmV+TAm&wm
_ _
“ " [= 56%
SRS
A SERRH I
Y S —— -
| | _ z
o | o o Aolmv




50

Equations 4.26 can be symbolically written as

J o373 3 -3 33733
A(z ,z ,z ,u ,b)8U = B(z ,z ,z ,u ,b) b (4.27)
where A represents the coefficient matrix on the left-hand side of

Eq. 4.26, B represents the coefficient matrix on the right-hand side of
Eq. 4.26, and

) T

3T T]er] ]| T
U = |z z Z u
J

The variation of the composite vector of state variables can be

solved from Eq. 4.27 as

. . -1 .
J J
s = (a') B b (4.28)
where .
AJ = A(zJ,zJ,zJ,uJ,b)
j IR I
B = B(z ,z ,z ,u ,b)

In deducing Eq. 4.28 from Eq. 4.27, it is required that the matrix Aj be

invertible. The existence of such an inverse is proved in Appendix A.
Equation 4.28 expresses the variation of state variables in terms

of variations in the design variables. Substituting 6Uj from Eq. 4.28

into Eq. 4.20 gives

1j Y Ay, Y, Y, j -1 3 Y,
Sy~ =1 _L )L * 1 __‘p_l_ ) B eb 4 _"_’1_ 8b
9z . - ou ob ,
9z dz 3j -

(4.29) :



+ ~1
J
To avoid calculation of (A") , the product of the row vector of
- . ..1
constraint derivatives and (A?) is denoted by a composite adjoint
i3t ‘
vector A, i.e.,

Y - 9 3 j -1
b\ | ¥ l “”:‘ ) (4.30)

Equation 4.30 can be rewritten as

i T
Wy 3= 1 4.31)
9z . ou
3z 9z
J
ij

The composite adjoint vector A =, as represented in Eq. 4.30, is a
12n x 1 vector. This vector can be written as a composite vector of
ij 3
four (3nxl) adjoint vectors Xl to A4 . Equation 4.31 can thus be

expanded as




ze
the
/ Z@
te

i
| |
| |
| |

ze 2
ABE/ Hflmv, “ 0 “ 0
_ _ R
|~ | |
ze\ | zo\1 za1 28] | z |
A%/ N.T?@Tmnm | H.Aqmv | ©
| _ |
-|-- e e e
. | 2o\ 26l 2 _ oe1ze] |
@y e [
| |
_ |
_ _
| _
| |

3

Paman
o‘u
€0} O
N’




Equation 4.32 is a system of 12n linear equations. Rather than solve
this as a coupled system of 12n equations, the form of the coefficient
matrix makes it possible to solve four separéte linear systems of 3mn
equations each. |

As can be seen from Eq. 4.32, there is no coupling between the
adjoint vector xzj and any of the other adjoint vectors. Thus the las
3n equations can be written as

U a T
0| A7 = Y (4.33)
dz| 4 /.

J J
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t

which has the same coefficient matrix as Eq. 2.19. As noted in Section

2.2.3, the solution of linear systems with this coefficient matrix is

very efficient, since the LU factored form of the coefficient matrix has

already been computed and stored.

Equations (6n + 1) to (9n) of Eq. 4.32 can then be written as

n

T . T .. T
i i 9
[aﬂ N A B Y | (4.34)

j 9z j 9z 3

ij
Since X4 has already been determined as the solution of Eq. 4.33,
Eq. 4.34 can be rewritten as

+ [ 3G A : (4.35)

. AT
5
se| Mo (%%

j 9z 3 oz i

The coefficient matrix in Eq. 4.35 is the transpose of the coefficient
matrix of Eq. 2.19. The remarks made above about the solution

efficiency of Eq.'4.33 are also valid for Eq. 4.35.



54

Continuing this process of backward solution, equations (3nt+l) to

(6n) of the linear system of Eq. 4.32 can now be written as

T 39 \T O JlT T
20 i (A} -5 [3? ﬁ)z z|| + a3+ (36 ,ij
az 2 ° * az az 3 . 4
j vaz 9 h

j

(4.36)
ij ij
where A3 and k4 are the solutions of Eqs. 4.35 and 4.33,
respectively.

As in the case of Eq. 4.35, the coefficient matrix of Eq. 4.36 is
the transpose of the coefficient matrix of Eq. 2.19, so the remarks made
about the solution efficiency of Eq. 4.33 are also valid for Eq. 4.36.

The first 3n equations of the linear system in Eq. 4.32 can now be

written as

Q] @
N

T T T
(ﬁ) al - (BG) AL (4.37)
9z 0z i 4
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where X;j, Azj, Aij are the solutions of Eqs. 4.36, 4.35 and 4.33,
respectively. The coefficient matrix of Eq. 4.37 is the transpose of
the coefficient matrix of Eq. 2.19, so the remarks made about the
solution efficiency of equations with this coefficient matrix are also
valid for Eq. 4.37.

Equations 4.33 and 4.35 to 4.37 are four adjoint equations associ-
ated with the four state equ;tions. Now that the solution of the

ij '

J
composite adjoint vector A is known, Eq. 4.30 can be substituted

into Eq. 4.29 to giVe

i b (4.38)

.

Equation 4.38 expresses the variation of a composite design con-
straint in terms of the variation in design only. Comparing Eqs. 4.21

and 4.38, it can be concluded that the quantity premultiplying &b in

th
Eq. 4.38 is the design sensitivity vector of the i constraint, at the

th
j grid point. Therefore,

LT LT, 3y
gl - pid i 4| 1
oD

3
Substituting for B~ from Eq. 4.26, this can be explicitly written as
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J J

13T 18 13 (3%} 2|z |+ 3 [[32) 2| + (3%

+ A 3b |36 |\3z o6 [\oz 3z

3 L L h|
T X
o s ) )

+ A ob 3z B{—= \ 3b - \dz (4.39)

&L - j i

Equation 4.39 gives the design sensitivity of a composite design
constraint i at grid point j, in terms of derivatives of the position

state equation and the adjoint variables.

4.4 Design Optimization Algorithm

4.4.1 Active Set Strategy

With the design sensitivity information computed in the previous
section, one can proceed to implement the optimization algorithm of his
choice. The gradient projection algorithm with constraint error
correction [20] has been used in the past in related applications
[26, 27]. This algorithm is used here for design optimization. Before
implementing this algorithm for the present application, some observa-
tions can be made that will enhance efficiency of computation.

In connection with the composite design constraints of Eqs. 4.16

and 4.17, it can be observed that many design constraints can be put in
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a simpler form than that indicated in these equations. Constraints that
do not involve the state variables do not explicitly or implicitly de-
pend on the input variables a. Such constraints are called 'non-
parametric' constraints. Design constraints that involve the state var-
iables are called 'parametric' constraints. It is necessary to make
this distinction, since only the parametric constraints aré required to
be satisfied over the entire range of input variables a. For a given
design, the nonparametric constraints need only be evaluated once.
However, parametric constraints must be evaluated at all points on
the interval of the input variables.

An active set strategy may be adopted to determine the reduced set
; of active constraints. Since equality constraints, parametric or
nonparametrié, are always active, they are always included in the

active set Y. Nonparametric inequality constraints that are e-active
are also included>in the reduced set i. Parametric inequality
constraints, due to their dependence on the input variable a, must be
evaluated on all points on the grid of input variable a. Some
computational efficiency can be realized from the fact that the gradient
projection algorithm, as stated in the following section, allows only
small changes in design leading to small changes in state. A design
constraint with a large violation at a giveﬁ design iteration may not be
fully satisfied at the subsequent design iteratidn. This is so because
the algorithm used for optimization here uses only first-order
information about the design constraints. However, design constraints

are generally nonlinear. The regions of the input variable grid in

which a parametric inequality constraint is active are also not expected
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to change rapidly from design iteration to iteration. It is thus .
possible tq avoid evaluating, for a few design iterations, a parametric
constraint in the region in which it is not E-active.

Design iterations in which the parametric constraint is evaluated
at each point on the a grid are defined as 'sweep' iterationms.
Iterations in which the parametric constraint is evaluated only in the
active region are called 'nonsweep' iterations. The interval between
two 'sweep' iterations depends upon how rapidly the active regions are
changing. For 'nonsweep' design iterations, it is not necessary to
solve the state equations on the entire range of the input variable.
Considerable computational saving can be realized by having a large
number of 'nonsweep' iterations between successive 'sweep' iterations.
Since new active regions can only be detected during 'sweep' iterations,
having a large number of 'nonsweep' iterations separating two 'sweep'
iterations could lead to new active regions going undetected for a
number of design iterationms.

Two alternative definitions could be used to define active regions
on the grid of the input variable. The first definition, as shown in
Fig. 4.1, involves determining the e-active relative maxima of the
constraint function on the o-grid. The active region is then defined to
be the set of points at which the relative maxima occur and one grid
point on either side of these grid points. The active region can thus
be defined by the index set IR,

I (4.40) g

=1 UI UTI
PR R R
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where

L]
]

ij .
{371, 3, 341 | v~ > - e, i =1,000,p, 2 € € -1

is a relative maximum point }

.. 13 ) ,
{3,341 ] v~ > - e, i=1,000,p, 3 = 13

-
1]

is a relative maximum point }

. . ij i .
I ={J_1’J’ |‘p >—E’1=1’°"’P33=T;

is a relative maximum point }
The second definition of active region involves determining all the
points on the o grid at which the constraint function is e-active. This

set is defined to be the e—active region. Denoting this set as I ,
E

ij
IE ={J I 1] > - €, 1=1,e00,p, 1 <j €T} (4.41)

The relative maximum strategy has been suggested for defining
active regions for parametric constraints in Ref. [25]. When applied to
constraints in mechanism optimization, this strategy many times causes
"rapid oscillation of the relative maximum point on the o-grid. A switch
to the €-active strategy overcomes this problem. As is evident from
Figs. 4.1 and 4.2, there is a penalty to be paid for this switch, since
the latter strategy requifes a larger number of grid points to be

included in the e—active region.
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4.,4.2 Gradient Projection Algorithm -
The Gradient Projection Algorithm [20] for design optimization can
now be stated in the following steps:,

0
Step 1: Estimate a design b , and impose a grid on the range of

the input parameters.

Step 2: Solve the state equations of Eqs. 4.12 to 4.15 for state
j oj "j j
variables z , z , z , u , respectively, where j = 1,...,T if the

current iteration is a 'sweep' design iteration or j I or

R i
I, Note, the first design iteration must be a sweep iteration.
E

Step 3: Determine the active region, depending on the strategy

~

chosen, and form a reduced vector { consisting of all e-active non-
parametric inequality, and all equality parametric and nonpara-

metric constraints. For inequality parametric constraints, the

constraints evaluated in the active regions are included in V.
i3 1 4] ij
Step 4: Compute adjoint variables 14 , A3 s Az , and Al from Egs.

4.33, 4.35, 4.36 and 4.37, respectively, and construct design

ij
sensitivity vectors £ of Eq. 4.39 for the constraint functions in

- - 1] ij
Y. Form the matrix A=[2 "], whose columns are the vectors £

~ ~

corresponding to constraint functions in ¢. Thus, 8y = A &b

Step 5: Compute the vector M and matrix M from the following

Yo
relations;
T -1 0
M =AW 32 (4.42)
¢¢0
0
where £ 1is defined in Eq. 4.18 -
~T 1 ~
M =AW A (4.43)

14 -
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Step 6: 1In the first iteration, compute a parameter Y related to

step size, as

LW e (4.44)
Y = 0
28 v (b))
0

where B is the desired fractional reduction in the cost function.
The usual range of B is 0.03 to 0.15. In succeeding iterations,
the factor vy is adjusted to enhance convergence of the algorithm.

"1 ~2
Step 7: Compute p and u from eqs. 4.45 and 4.46,

~1
12 Vo
~> o
1A%
where Ay = C ¢ , C is the fraction correction of the constraint
desired, usually in the range 0.30 to 1.0.
1 2
Step 8: Compute 6b and &b from Eqs. 4.47 and 4.48 as
1 -1]o ~1
b =W £ + Ay (4.47) 3
|
2 -1 "2 ‘
b =W Auyp (4.48)
Step 9: Compute an update in design &b from Eq. 4.49
1 2
b= - 168 + &b (4.49)

2y

Step 10: Update the estimate of the optimal design using Eq. 4.50

1 0
b =b + & (4.50)
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Step 11: If all constraints are satisfied to within the prescribed

tolerance and
1/2
1 2

1 s
|18b || = ) W (8b) < 8 (4.51)
i=1 i i

terminate the process. Where § is a specified convergence

tolerance. If Eq. 4.51 is not satisfied, return to Step 2.
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CHAPTER 5

NUMERICAL EXAMPLES

5.1 Example 1 - Kinematic Synthesis
of a Path Generator

5.1.1 Problem Description

A segment of a straight line is required fo be generated by a point
P on the coupler of the four-bar mechanism shown in Fig. 5.1. In
addition to having the lengths of various links as design variables
(b1 to b3), the orientation of the base link, body 1, is a design
variable (bS). The orientation of the reference line with respect to
the base link, about which the input variable o« is measured, is also a
design variable (b4). The other two design variables (b7 and b8) are as
indicated in Fig. 5.1. The length of the base link is kept fixed at 10

units. This problem is the same as Example 3 in Ref. 26.

5.1.2 Problem Formulation
The motion specification for this problem requires that the devi-
ation of the y coordinate of coupler point P from zero in the global
coordinate system be minimized. The position vector for point P, in

terms of design and state variables, can be written as

b
2
o Xq + cos 63(— — + b7 cos b8) - b7sin bssin 63

i
]
i

b
2 -
¥4 + sin 63(— —5 + b, cos b8) + b,cos 93sin bg J (5.1)




P(X,Y)

Figure 5.1 Four-Bar Path Generator Mechanism

= X
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Equation 5.1 can be symbolically expressed as

Rp = (Rpx) I+ (pr) J (5.2)

where Rp and R.P represent the x and y coordinates of point p in the
X y
global coordinate system.

An artificial design variable b 1is introduced such that
9

a o f€a
min max

where the range of o is given as a pin = —-0.3491 radians and op,y = 0.3491

radians. This problem can now be formulated in the standard form given

. in Chapter 4; i.e., minimize
Min y, = by (5.3)
subject to discretized design constraints
i _ .
wl = 'Rp ‘ —bg <0 > i-= 1, eeey T (5.4)
y'i

The constraint that the input link bl is a crank is imposed in the form

[26]

|r

i1

¥, - b2| -b,+b, <0 (5.5)

4 3 1

¥y Eb +by-b, -1, <0 (5.6)

1 3 2 4

- Nonnegativity constraints on b7 and b8 are written in the form
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¥, = ~b, <0 (5.7)
¥ = -bg <0 (5.8

The error bound constraint in Eq. 5.4 is imposed over a grid of
T = 19 equally spaced points on the range of a. The driving kinematic

constraint for this problem is given as

4

- g +b, +al=0 , i=1,.0.,19

) 4

5.1.3 Numerical Results

5.1.3.1 Verification of Design Sensitivity Analysis

It is necessary to numerically verify that the technique developed
in Chapter 4 has been correctly coded. The procedure used is briefly
explained here.

The problem is set up through user supplied routines and input
data. The code is allowed to run for 2 design iterations. On the basis
of the design sensitivity vector calculated and the change in design &b
obtained in the first iteration, changes in the constraint can be pre—
dicted. This predicted value can be compared with the actual change
obtained when the constraint functions are evaluated in the second de-
sign iteration. If the design sensitivity analysis is valid, the pre-
dicted and actual changes in constraints should agree within a reason-
able tolerance. This procedure is now used to verify the design sensi-
tivity analysis for this problem. Consider grid point 19, where the

parametric constraint of Eq. 5.4 is violated during a design iteration.



T

21219 = [-0.67893, -.04693, 0.06083, 2.30624, 2.85158, -1.0,

0.99853, 0.34923, -1.0]

T
The change in design at this iteration is éb = [0.01663, 0.00115,
-0.00149, -0.05650, -0.06985, 0.02450, -0.02446, -0.00853, -0.2096].
The predicted change in the constraint is thus given as

9 1 19T

A¢;’1 = 21219 5y = 0.1832

The actual change in the constraint function is evaluated as

Awi’lg = ~0.1709

The difference between the predicted and actual change is 6.7%. The

design sensitivity analysis is thus considered to be valid.

5.1.3.2 Optimization Results

The results obtained from the optimization procedure are as
presented in Table 5.1. None of the nonparametric constraints was

active at the optimum. As given in Table 5.1, there are 5 critical

points on the grid of the input parameter at the optimum design, where

the error in function generation is a relative maximum. The maximum
error obtained in Ref. 26 for this problem was about 0.0019, which is

greater than that obtained by the present technique.
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5.2 Example 2: Kinematic Synthesis of a
. Rigid Body Guidance Mechanism

- 5.2.1 Problem Description
The mechanism shown in Fig. 5.2 is to guide the book-carriage of a
library book-stacking vehicle [28]. It is required that point P
describe a path given in Table 5.2. In addition it is required that
body 8, the carrier, assume angular orientation at specific input grid
points, given in Table 5.2. The mechanism is driven by the rotating
crank, which is body 4.
Design variables bl’ b2, and b3 radially locate the 3 joints of tbe
ternary base link. The angular orientation of these radial lines is
. specified by the three angles Bl = 73.5°, Bz = 61.5°, and 63 = 71.5°.
Design variables b4 to b9 are the lengths of links 4 to 9, respectively.
The length ofxlink 10 is taken as 10 units. Other angles specified in

Fig- 5.2 are given as 84 = _50.00, 85 = —63000, and 66 = _103'087100

5.2.2 Problem Formulation
The global x and y coordinates of the coupler point P can be

written in terms of design and state variables as

b B
_ 8 _ o .
R = {x8 + cos 6865— A cos 84) A sin 68 sin 84}

[n ]

P

b
+ {y8 + sin 68(§§-— A cos 84) + A cos 68 sin 84} J (5.9

Equation 5.9 can be symbolically written as

Rp = (Rpx) I+ (pr) J (5.10)




B B2 B3

Figure 5.2 Rigid-Body Guidance Problem
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Table 5.2 Output Specifications for Example 2

Grid pt 64(deg) (px)d cms (Py)d cms (68)d(deg)
1 -62.5 11.943 6.458 103.0871
2 -40.5 12.712 6.288 107.9571
3 23.0 13.214 6.075 111.2971
4 0.0 14.553 5.774 114.2471
5 31.0 15.824 5.716 113.5876
6 50.5 16.396 5.71 110.3871
7 78.5 16.388 6.465 103.0871

73
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where R, and Rp represent the x and y components of the position
X y
vector of point P.
An artificial design variable b is now introduced to impose the

following constraints:

(R_)~-(p),|. <cb J =1, eee, 7
px de H H H

(Rp ) - (py)d

; Sebi 53 =l e, 7
y

(68) (68)dj <c,b ,j =l’ "’)7

¢ -

where (p )d and (p )d are the desired x and y coordinates of point p,
x y

(88)d is the desired orientation of link 8 and (68) is the generated

orientation of l1link 8.

In standard form, this problem is formulated as; minimize

qb b10 (5.11)

subject to discretized design constraints

0oz R =@y |y ebyg €0, =L e, T (5.12)
X

el )=y [ megbp €0, G e, 7T (513)
y _

W= | (8, = (8)y |y megdg S0, F=1 e T (5.18)

The driving kinematic constraint for this problem is given as:
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5.2.3 Numerical Results

5.2.3.1 Verification of Design Sensitivity Analysis

The procedure outlined in Section 5.1.3.1 is used here to verify
the design sensitivity analysis. The design sensitivity vectors at a

certain iteration for the three error constraints were obtained as

T

glsl = [-0.44247, -0.05346, 0.77940, 0.44687, 0.01196, -0.06584,
0.16044, -0.18837, -1.19525, -1.0 ]

2,47

2224 = [-1.42060, 0.03326, 0.32397, -0.13204, 0.48655,
~0.46958, 0.60349, 0.14956, -0.65320, -1.0]

T
2326 = [0.24504, -0.15474, —0.08915, 0.51890, -0.82560, 0.20605,

-0.23002, -0.49248, 0.88695, -1.0]

The change in design obtained at this iteration was
GbT = [—Of00368, 0.02838, -.001735, 0.002504, 0.01337, 0.02730,

0.00148, -.00806, 0.003155, —0.002811]

The predicted changes in the constraints can thus be computed as,

T
A\L»Il)’l = bl & = -0.00096
9.4 24T
st = 2% & = -0.00060
3,6 3,67
a2 = 238 &1 = -0.000014

The actual changes in these constraint functions were

1,1 _

N (0.003869 -~ 0.004834) = -0.000965
A%§’4 = (0.0023898 - 0.002992) = -0.000604
3,6

A%A = (0.00006938 - 0.00008909) = -0.0000197
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Comparison of the actual and predicted changes in the constraints
shows that for the first two constraints there is a good agreement.
However, for the third constraint the agreement is not as good. This

can be attributed to numerical error in differencing very small numbers

5.2.3.2 Optimization Results

The results from the optimization procedure are presented in Table
5.3. The first parametric constraint was active at 3 critical points,
the second at 2 critical points, and the third at only one critical
point. The maximum error obtained using the present technique is 20%

higher than that reported in Ref. 28.

5.3 Example 3 —— Two degree of Freedom
Function Generator

5.3.1 Problem Description

The relationship u = (1 + v)loglo(l + w) is to be mechanized in
the region 0 < v < 1, and 0 < w < 1. This problem is similar to the
numerical example given in Ref. 6. The mechanism to be used for
function generation is a seven—~link mechanism shown in Fig. 5.3. The
inputs v and w are the displacements of bodies 5 and 6, respectively.
These displacements are measured from reference positions, measured
along the global axis, which are taken as design variables b1 and b .
The output u of the mechanism, is the displacement of body 2 relative
to the origin of the global coordinate system. This displacement is
measured along the line of translation that makes an angle y = 27.881°

with respect to the global x—axis. the lengths of links 3, 4, 6 and 7

are design variables b4 to b7. The angle between links 4 and 6 is
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design variable b3. The other parameters related to this problem are

as indicated in the Fig. 5.3.

5.3.2 Problem Formulation
The displacement of the output slider, body 2, along the line of
translation can be written in terms of the generalized coordinates of
body 2, as |

x2 :
U= ———— (5.15)
cos Bl .

where Bl = 27.881°.

An artificial design variable b8 is introduced such that

ug-ud j,k<b8 J=l, 000{4
k= l, too“;4
where (ug)j K represents the generated value of u, for specific values
b}

] j K .

of the input parameters c% and a5, and (ud)j,k 1§ the desired value of
i k

u, for the same values of the input parameters <€ and % The

function to be generated in this example,
(u)) =(1 + aj) log, (1 + k)
a’i,K 1 10 %
This problem can be formulated in standard form as; minimize
¢b = b8 , ; (5.16)

Subject to discretized design constraints

L, 3, k _ | - j a+ & | -
v = [ = (L + @) log (1 + &) | = b

<0
g’3, ?

8

j,k= 1’...’4 (5.17)
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The error bound constraint is imposed on a grid of four equally spaced
points, Fig. 5.4, on each of the input variables al and az. Thus a
total of 16 grid points are obtained. No other design constraints are
imposed in this problem. The driving kinematic constraints for this

problem are given as

d .
6] = xg = (b + a{) =0 , J = 1yeee,b
d _ k, _ _

¢2 = X8 (b2 + az) - O ’ k = 1,...,4

5.3.3 Numerical Results

5.3.3.1 Verification of Design Sensitivity Analysis

The design sensitivity of the upper bound comstraint, Eq. 5.17, at

iteration no. 11 and grid point j = 1, k = 4 was obtained as

L = [0.15546, 0.23616, -0.57531, -1.45199, 1.29105, 0.06958,

-0.32795, -1.0]
The change &b in design was

GbT = [-0.01027, 0.00197, 0.01753, 0.00938, 0.01017, 0.01178,

~0.00640, —0.00070]

The predicted change in constraint is thus computed as

T
A‘PII,’1’4 = o114 sy = ~0.00805

The actual change in constraint was obtained as

Awi’l’a = 0.07259 — 0.08055 = -0.00796



w AN
4) 4,2 4,3
1.0 4.4
3,1 3,2 3,3
3,4
2,1 2,2 2,
3 2,4
1, 1,2 1,3 1,4
' >
0.0 1.0 v

Figure 5.4 Grid Spacing for Problem 3
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The difference between the actual and predicted change in the con-
straint is 1.0%, which verifies that the design sensitivity analysis

for upper bound constraint of Eq. 5.17 is valid.

5.3.3.2 Optimizatjon Results

The results of the optimization procedure for this problem are as
presented in Table 5.4. The maximﬁm error in function generation
obtained from the present procedure is about 25% higher than that
obtained in Ref. 6. This can be attributed to 2 differences in the
formulation. First, the design variables used in the present problem
and Ref. 6 are not the same. Second, the grid points in the present
formulation and Ref. 6 are not identical. Location of grid points is
known to have a very significant effect on the error in function
generation [14].

5.4 Example 4 — Stress Constrained Design
of a Four—-Bar Mechanism

5.4.1 Problem Description
The four—bar mechanism shown in Fig. 5.5 has its input crank

rotating at a constant angular velocity of 300 rpm. This mechanism is
to be designed for minimum mass, requiring that bending stresses in
mobile links 2, 3, and 4 do not exceed an allowable stress. The design
variables in the mechanism are the circular cross—sectional areas of
the three mobile links. The link lengths are kept fixed at the values
specified in Table 5.5. The mass density and allowable stress in the
links are as given in Table 5.5. Specifications for this problem afe

the same as those of example 1 in Ref. 30 and example 1 in Ref. 29.
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| Jnt. 4

Figure 5.5 Minimum Weight Design of Four-Bar Mechanism



Table 5.5 Data for Example 4

85

LINK

1 2 3 4
Length (m) 0.9144 0.3048 0.9144 0.762
mass
density - 2757.25 2757.24 2757.24
(kg/m3)
Modulus of -
Elasticity - 6.8948x1010 6.8948x1010 6.8948x1010
(Pa)
Stress
upper - 2.7579x107 2.7579x107 2.7579x107

bound (Pa)
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5.4.2 Problem Formulation

As shown in Chapter 3, the Lagrange multipliers obtained as a
solution of the force equation are directly related to reaction forces
in the joints. As shown in Fig. 5.6, reactions at the ends of a link
could thus be represented by the appropriate Lagrange multipliers.
However, to compute bending moments, the end reactions are required to
be expressed in a local coordinate system. As shown in Fig. 5.6, the
uk, u system of forces at a joint must be transformed to the Pk,

k+1
P system.

k+1

The external load on the beam depends upon the normal acceler-
ation. To compute the distribution of normal acceleration along the
length of the link, a cross section of the link at distance v along the

x axis is considered. The position vector for point ¢ can be written

as

Rc =X I+ Vs J + v(cos ei I+ sin 6 J) (5.18)

where X yi and ei are the three generalized coordinates locating the
i
body in the plane and I and J are unit vectors in the global X and Y

directions.

The absolute acceleration of point c can thus be written as

[ g
+

R = (x, -~ vcos 6, 52 - vsin 6,6) I
ci i i i ii

. . ) .
(yi - Vv sin Bi 9i + Vv cos eiei) J

Transforming the global unit vectors to the local system,

acceleration normal to the length of the link can be written as
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ayi = (- x, sin ei + y; cos Si) + v Bi (5.19)

where X5 ¥q and ei are the generalized accelerations of body i. From
Eq. 5.19, it can be seen that the normal acceleration varies linearly
along the length of the link.

The distributed loading on the beam can thus be written as

fi = -mli{(-xi sin Bi + y; cos ei) + v ei} (5.20)

.

where ml is mass per unit length of link i.

i
Equation 5.20 can be written as

fi = -my  ag + v Gi (5.21)
i i
where a‘Q’i = =Xy sin ei + y; cos Gi.

Since elementary beam theory is used to compute bending stresses,
it is necessary to first determine the point of maximum bending moment.
This is the point at which the shear force changes sign. The shear

force at any point D, at a distance X from O, can be written as
0

X
B 0 .-
FS = Pk+1 + mg J . (az + v ei) dv
i -/ i
LT
= Pk+l - mzi ali(XO + —EJ +-—§ (XO - —ZJ (5.22)

At the point of zero shear force, the right-hand side of Eq. 5.22

will be zero, giving rise to the condition
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£ P
i 2 i i i k+1y _
— Xy +a, x0+(2 - - J=0 (5.23)
i L
i
Solving for X.O from Eq. 5.23,
a,6 &£, 2 7
e w2 g AT A% P
[ AN s 3 2 8 m
i i Ri
X = T (5.24)
0
0,
i

The maximum bending moment can thus be written as

% X
. 0 -
M0i=Pk+1(—%-+XO)+m2f (ag +ve)(n-x)av (5.25)

2 2
% X% X
_ i __0 i i“0
Mo ”Pk+1(2+xo)+mz{azl[ 7 - 5]

—3 (5.26)

ﬁ 23 X, 212 ]}
z :
where XO is given by Eq. 5.24.
Equation 5.26 is valid only for links 3 and 4. The crank, link 2,
is rotating at constant angulaf velocity and has no normal
acceleration. Tﬁe maximum moment on this link is the torque required

L

to drive the mechanism, Tt occurs at n = - El-and is given as

(5.27)

Since the links are of circular cross section, the area moments of

inertia can be written in terms of the design variables as
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-1 (5.28)

where 2 < i < 4 is the link number. The distance of the extreme fiber

from the neutral axis is given as

The absolute values of the maximum bending stresses, from

elementary beam theory [31], can now be written as

4 m

(%); =373
b’

i-1

M, ’ , 2 <1i <4 (5.29)

where MO is given by Eq. 5.27 for i = 2 and by Eq. 5.26 for i = 3 and 4
The optimization problem can be written in standard form as;

minimize

Yo TP Y by teg &by 0 4 by (5.30)

where p is mass density of link i, subject to discretized design

i
constraints
()
qig__zk;l_l<o,j=1, ooy T (5.31)
a
1l <K <3

where ¢ is allowable stress and T is the total number of grid points.
a
For this problem 19 grid points were considered. The driving

constraint for this problem is given as

=0 Py j=1,-qo,19
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5.4.3 Numerical Results

5.4.3.1 Verification of Design Sensitivity Analysis

The design sensitivities of the stress constraints at a certain

iteration were obtained as

. |
17 o [-1801.18, 1928.83, 853.239]F

T T
0.0 ,_3481067, 0.0 ]

il

0.0, 0.0 ,+2051.6 ]©

n
—

The change in design at this iteration was

) Sbr = [z.ozleo's, 1.76x107°, -8.626x10'6]
* The predicted changes in the constraints can thus be computed as
1,17 1 17T
A¢P’ = 2 &b = -0.00983
2,15 _ 2,15 '
Awp’ = £7? &b = -0.0613

T
a1 = 315 & = 001739

The actual changes in the constraint function were obtined as

Aq;’17 = -0.0097
Ay§’15 = -0.06002
Ayi’ls = -0.0169

Comparison of the actual and predicted changes shows that the two
* sets of data agree to within 2,5%. The design sensitivity analysis can

thus be considered valid.
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5.4.3.2 Optimization Results

Results of the optimization procedure are presented in Table 5.6.
Results obtained in Refs. 29 and 30 for this problem are also given.
As can be seen, there is a substantial difference between the designs
obtained. This difference is attributed to the fact that Refs. 29 and
30 use different methods for stress analysis than used in the present
formulation. The constraint functions are, therefore, not identical.

5.5 Example 5 - Dynamic Balancing of
a Four-Bar Mechanism

5.5.1 Problem Description

It is desirable to make the shaking forces of a mechanism vanish
by balancing the mechanism. However, doing so introduces additional
difficulties. For example, the RMS bearing forces could increase by
as much as 100 percent [4]. 1In the present example, the four-bar
mechanism shown in Fig. 5.7 is considered. A trade—-off is resorted to,
in which the RMS shaking forces are minimized, while limiting increase
in the ground-bearing forces. Minimization of RMS shaking force is
accomplished by modifying the inertial properties of the output, link
by adding a circular counterweight to it, as shown in Fig. 5.8. The
mass and location of this counterweight are design variables.

Data for the mechanism considered in this problem are given in
Table 5.7. This problem is the same as the single counterweight

optimization example given in Ref. 4.



Table 5.6 Results for Example 4

Design Variables

b (m%) b, (m?) b (m2) Mass
1 2 3 (kg)
Starting 1x10-1 1x10-1 1x10-1 546.26

Design

Optimal Design| 1.03x10-3 0.621x10-3 0.1169%x10~3 2.686
30th iter

Results from 0.401x10-3 | 0.385x10-3 | 0.385x10"3 2.134
Reference 29

Results from 0.953x10-3 | 0.488x10-3 0.309x10-3 2.703
Reference 30

1 -6
At the final design ||&b || = 2.5 x 10

Approximate CPU time (IBM 370/168) = 1.25 Sec/Iteration
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Figure 5.7 Four-Bar Mechanism to be Dynamically Balanced



Figue 5.8 Schematic of Counterweight Used in Dynamic Balancing
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Table 5.7 Data for Example 5

96

LINK
1 2 3 4
Length (m) 7.62x10-2 2.54%x10-2 1.016x10~1 7.62x10-2
Mass (kg) - 4,588%x10-2 1.084x10-1 6.602x10-2
Moment of
inertia @ - - 3.208x10~4 6.779%10-5
C.G kg-m2
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5.5.2 Problem Formulation
The RMS shaking force for the four-bar mechanism being considered

here is given as [4]

1 2T 2 2
o), =5 BT (e Pyl + [y + Py,
(5.32)
where F and F are the ground-bearing forces at joint 1, in the X
14X 14Y

and Y directions, respectively; F and F are the ground-bearing
34X 34Y

forces at joint 4, in the X and Y directions, respectively; and 62 is

the angular orientation of the input crank.

The RMS ground-bearing forces are given as [4],

11 L 2 2
(FI)RMS “Yan fg [(Falx + F41Y)]dez (5.33)
1 T o2 2 \
(7, )RMS “VT o (s * Fisy)lae, (5.34)

where (F ) and (F ) are the RMS ground-bearing forces at joints
1 RrMs 4 RMS
1 and 4, respectively.

There is a one to one correspondence between the design variables
used here and those used in Ref. 4. Location of the center of mass of
the combined link, in terms of design variables and given data, can be
written, using relationships given in Ref. 4, as

4 =P (mo o) (m4p4 blbz) (5.35)
1

and
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where c4 and d4 define the location of the combined center of mass, b
is the mass of the counterweight, b and b are the distances shown in
Fig. 5.8, m4 is mass of the originai outpug link, and p4 is given data,
as defined in Fig. 5.8. |

Acceleration of point A relative to point O can be computed by the

relation

3, =3 (EAO) (5.37)

where r 0 is the position vector of point A, relative to point 0, given
A
as .

Tho = (c4 cosb, - dASinea)i + (c4sin64 + d4c0364)3 (5.38)

Substituting rAO from Eq. 5.38 into Eq. 5.37 gives

- _ _ _ B . 2 . _ .
a0 = { (c4 cosb, d451n64)(64) (c4 sin, d4c0564)64}T
. 2 . .
{ [c4 sind, + d4c0594)(64) + (c4 cosf, - d431n64)64}3
(5.39)
The absolute acceleration of point A can thus be written as
a, = a, + a0 (5.40)

D'Alembert's force on the output link can now be written as

O .
F4 = —(m4 + bl) a, (5.41)
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Computation of D'Alembert moments requires the combined moment of
inertia of the original link and the counterweight. Since the
counterweight is circular, it's moment of inertia about point B is

given as
2 2
I* = bl(b2 + b3)/2 : (5.42)

Using the parallel axis theorem [23], the combined moment of inertia of
the original link and the counterweight can be written as

0,,- 2 = 2
I, =I,+ m4(|r0A|) + 1% + b, (|r,|) (5.43)

where IA is the combined moment of inertia about point A and I0 is the
moment of inertia of the original link about point 0. Since moment of
inertia of the original link given in Ref. 4 is about point C, the
parallel axis theorem must be used to write IO in Eq. 5.43 in terms
of the given data,
0,6 0,2 : :
IC = I0 +m, (p4) (5.44)
Substituting for I0 in Eq. 5.42 from Eq. 5.44 gives
0, 0,2 0, 2 2
IA = IC - m4(p4) + m4(c4 + d4)
0 2 2
* - -
+ 1% + b, [(p, = ¢, + )"+ (by = d,)"] (5.45)

The D'Alemberts moment can now be written as

M=-1, 6 (5.46)
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Forces in the ground bearings, used in Eqs. 5.32 to 5.34, can be
related, from the results of Section 3.3.1, to the Lagrange multipliers

by the following relationships

Flax = ™%
Flay = 7%
(5.47)
F =
34x Mo
Faay = M

Equations 5.32 to 5.34 can thus be rewritten as

2m
= 1 _ 2 _ 2
(Fyy/ & pus \[—7; [ [+ wd® + g + ol de, (5.48)

0
27
s e 2
(Frus J = fo [114+115]c1<a2 (5.49)
1 AT 2
(Flpus = Y27 jo [ + v, ] a8, : (5.50)

The optimization problem can now be stated in the standard form

of minimizing

Yo = Fyye)rus (5.51)
subject to constraints
1 (Fl)RMS
\ E——-F—-———-1<O (5.52)
1
(F,) :
W s__fr_f._Rﬂs.._ 1 <0 (5.53)
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where (FM/G)RMS’ (Fl)RMS’ and (F4)RMS are given by Eqs. 5.48, 5.49,
and 5.50, respectively, and F1 and F4 are the upper bounds on the
bearing forces at revolute joints 1 and 4, respectively.

The driving kinematic constraint for this problem is

. . -
8 =62—d31=0 , § = 1,000,15

The rationale used to compute the values of F1 and F4 is explained
in detail in Ref. 4. Briefly, to arrive at these numbers the RMS
ground bearing forces for the unbalanced mechanism and the fully force
balanced mechanism are computed.

Since the RMS bearing forces for the fully force balanced
mechanism are higher than those for the unbalanced mechanism, the
values of Fl and F4 are chosen to lie midway between the two extreme
values. For the present, these values are taken as F1 = 9,136 x 10-3 N
‘and F4 = 6.427 x 10-3 N.

The cost function and design constraints considered in example
problems thus far do noﬁ involve integrated quantities such as those
appearing in Eqs. 5.48 to 5.50. Computation of design sensitivities of
these functions can also be handled by the formulation developed here.
Design sensitivities of the integral cost and constraint functions can
similarly be written by taking the derivatives with respect to design

of Eqs. 5.51 to 5.53 [32], yielding

0

zT-—d% 27 d% dﬁo

l _
ab - Z7(E, s ({ [y + w5+ 35

du5 dull
* g+ gt g5 )] 49 (5.54)
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T 1 27 du du
1 dy 1 5
PR LA K R L TR S ——-]de} (5.55)
db 1 {%“(FI)RMS 0 4 db 5 b 2
T 2 2w du du
2 dvy { 1 10 11
PR X R S S B (Y L ——]de} (5.56)
db 4 21T(F4)RMS 0 10 db 11 db 2

Numerical integration of Eqs. 5.54 to 5.56 requires evaluation
of the integrand at specific points in the interval of integration.
Computation of the derivatives of Lagrange's multipliers appearing in
the integrands of Eqs. 5.54 to 5.56 can be routinely done in the

present formulation. The computer code is forced to treat u4, B, B

10
and ull as constraint functions, purely for the purpose of computing

the design sensitivity. The design sensitivity of these functions is
evaluated at points on the 82 grid corresponding to the nodes of the
15 point Gauss-Legendre integration formula [33]. Since constraints

¥ and ¥ do not depend on the input parameter, they are nonparametric

constraints.

5.5.3 Numerical Results

3¢5.3.1 Verification of Design Sensitivity Analysis

The design.sensitivity vectors of the cost and constraint

functions, at a certain design iteration, were obtained as

T
20 = [-.000799, .02880, .004828]
lT

L = [4.1542, -12.7106, 3.1470]
2T

25 = [3.9492, -14.846, -.3122]
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The change in design in this iteration was

Sb = [—0.000885, 0.001334, 0.000373]
The predicted change in cost is thus computed as

0 0T

Ay = 2
L Sb

0.0000409

Predicted changes in constraints are computed as

1

Ay = -.01946
¢P
2

Ay~ = -.0234
wP

The actual changes in the cost and constraints were

Ay = 0.000057
A

APt = -.011355
A - ']

A = -.01406
A L ]

Comparing the predicted and actual changes in cost and constraint
functions, it can be seen that the two sets of data no not agree well.
This can be attributed to the highly nonlinear nature of the cost and
constraint functions. This can be seen by computing the predicted
change in constfaint, using an average design sensitivity vector. For
example, consider counstraint 1, for which the design sensitivity vector
averagéd over the two design iterations is

T
1
[2 ]AVE = [4.1145, -12.4848, 3.1727]

The predicted change in the constraint, on the basis of the averaged

design sensitivity vector, is
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1
[Ax,')p ]AVE = -,01183

As can be seen, this figure agrees closely with the actual change in

the constraint.

5.5:3.2 Optimization Results

Results obtained from the optimization procedure are presented
in Table 5.8. For the purpose of comparison, the design variables used
in Ref. 4 are converted to those used in the present formulation. The
ratio of the RMS shaking force for the partially balanced mechanism to
that for the unbalanced mechanism is given by rf. As can be seen from
Table 5.8, a substantial reduction in RMS shaking force is obtained by
using the present formulation. Results obtained from the present
formulation and those in Ref. 4 differ substantially. This difference
is attributed to the fact that the present formulation imposes the RMS
ground beafing force constraints as inequality constraints and Ref. 4
considers these to be equality constraints. Significant improvement in

design from the present formulation over that from Ref. 4 is thus to be

expected and is evident from Table 5.8.




Table 5.8 Results in Example 5

Design Variables in
present paper
| I
b_(k; b b
1( g) z(m} 3(m) T
Starting Design 0.30 0.0 0.0 -
Optimal Design, 0.203 0.040 0.0098 0.25
15th Iter
Optimal Design 0.207 0.0183 -0.017 0.69
Ref. 4
1 -4
At the final design [|6b || = 1.6 x 10

Approximate computing time IBM 370/168 = 1.0 Secs/iteration
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS
FOR FURTHER RESEARCH

6.1 Conclusions

The five examples presented in Chapter 5 were studied to evaluate
versatility and effectiveness of the technique developed in the
previous chapters. In light of the results obtained with these
examples, the following conclusions may be drawn:

1. The constrained multi~element technique developed in
Chapters 2 and 3 for modeling kinematic systems is general
enough to represent a wide variety of planar mechanisms.

2. The adjoint variable technique has been successfully applied
for design sensitivity analaysis of planar mechanisms,
considering both kinematic and force response of mechanisms.

3. Due to the generality of the constrained multi-element
technique for modeling and the adjoint variable technique for
design sensitivity analysis, the synthesis and design
technique developed in this research is very general and
versatile. This is evident from the variety of examples

given in Chapter 5.

6.2 Recommendations for Further Research

In the preceding section it was pointed out that the state space

technique developed in this research has demonstrated its potential
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as a versatile and powerful tool for kinematic synthesis and design.
However, to fully realize this potential, it is recommended that the
following areas be further investigated:

1. The gradient projection algorithm stated in Chapter 5 was
used as the optimization algorithm in this research. This
algorithm, in its present form, is insensitive to
nonlinearity of the state equations and in the cost and
constraint functions encountered in kinematic synthesis and
design problems. In addition to its insensitivity to
nonlinearities, this optimization algorithm often produces
designs for which the mechanism locks up in some position.
This is primarily due to the algorithm's not having any
information about the kinematics of the mechanism.

It is thus desirable to investigate alternate optimization
algorithms that have the following desirable characteristics:
(i) The algorithm should be sensitive to nonlinearities

arising in mechanism synthesis and design problems.
(ii) The algorithm should produce design changes that are
compatible with kinematic requirements of the mechanism.

2. The gradient projection algorithm, like many other opti-
mization algorithms, does not guarantee a globally optimal
design. To be assured that the optimal design produced by the
optimization technique is globally optimal, it is necessary to
start the procedure with different initial designs. In most

mechanism synthesis problems a substantial effort has to be
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put into producing acceptable initial designs. It is thus

desirable to investigate techniques that guarantee conver-

gence to globally optimal designs.

3. The computer code used to implement the theory developed
in the previous chapters was of an experimental nature. Some
of the areas in which this code could be refined are as
follows:

(1) Significant improvements should be made in the solution
procedure for state equations.

(ii) Computation of derivatives of user-supplied driving
kinematic equations and cost and constraint functions
should be carried out with a symbolic manipulation
language.

(iii) Implementation of the code for execution in a
conversational mode would be highly desirable.

4, Synthesis and design of three—dimensional mechanisms is
currently at an elementary level. The theory developed here
for synthesis and design of planar mechanisms is extendable to

three-dimensional mechanisms and should be pursued.
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APPENDIX A

PROOF OF NONSINGULARITY OF MATRIX A IN EQUATION 4.27

Matrix Aj defined in Eq. 4.27 is the coefficient matrix on the
left-hand side of Eq. 4.26. A ﬁroof of the existance of an inverse for
this matrix will now be developed. The Jacobian matrix (a¢/az). that
occupies a band along the diagonal of matrix A is assumed to beJ
nonsingular. This assumption is initially made in Section 2.2.3 and is

still valid here.

Consider Eq. 4.22, with perturbation in design &b = 0,

t1 ch 0 (A.1)
2z
j

Since the coefficient matrix of Eq. A.l is nonsingular, by theorem 7.2

of Ref. 21, Eq. A.l implies that
J
§z =0 (A.2)

Consider Eq. 4.23 with b = 0,

.j . . ]
9% sz =03 |3 z|+ 3 |3¢ «a 52" (A.3)
9z| 0z | 0z 9z | da i

J

k|
Substituting for 6z from Eq. A.2, Eq. A.3 becomes

[_Bj{l 527 = 0 (A.4)
oz
j
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By the same argument, Eq. A.4 implies
&) =0 (A.5)
Consider Eq. 4.24 with &b = 0 and Eqs. A.2 and A.5,

-

PgJJ §z =0 (A.6)
0z .

As deduced previously, Eq. A.6 implies

..j
Sz =0 (Ao7)

Consider Eq. 4.25 with éb = 0 and Eqs. A.2, A.5 and A.7,
T

09 (SUJ =0 (A.8)
a_z_ .

J
The coefficient matrix of Eq. A.8 is the transpose of the Jacobian
matrix of Eq. A.l. Since the Jacobian is nonsingular, its transpose

also has the same property. Eq. A.8 thus implies

J
Su =0 (A.9)
h|
From the definition of the composite state variable vector U given

in Section 4.3,

T

:T
j T
Su

SU = |8z

s

8z (A.10)

«T
8z

-]
Substituting from Eqs. A.2, A.5, A.7 and A.9, Eq. A.10 can be written

as
i
§U =0 (A.11)

Now consider Eq. 4.27 with éb = O,

3 i - ,
A 8§U =0 - (A.12)
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As shown in the above, Eq. A.12 implies that Eq. A.l1l holds, i.e.,

|
§U =0
By theorem, 7.2 of Ref. 21, this is equivalent to the statement that

J
(A") is nonsingular.,
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Before any derivatives of Kinematic Constraint Equations are

calculated, the following notation is introduced for a revolute joint$§

R =§ cos 6 -
1 ij i

sin 8 +
2 ij i

cos 6 -~
3 ji h|

sin 6 -

= 1% gin o,

n

n

n

n

ij

ij

ji

ji

sin 6
i

cos 6
i

sin 0
R

cos ©
J

an_,
1] sin

RN

(B.1)

(B.2)
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9 . an ¥ . m,
The partial derivatives 13, 13 J1 apd _JI, will take on
SBk SBk 3bk 3bk

nonzero values only if design variable bk is related to the lengths of
body i or j.

Similarly for translational joint, the following notation is

introduced:
—
Tl = & cos 8 - n sin ©
ij i ij i
T2 = & sin 6 + n cos ©
ij i ij i
T3 = £  cos 6 - n_ sin 6'
J1 J Ji J
> (B.3)
T4 = &  sin 8 + n_ cos 6.
Ji J Ji J
T5 = (T1)(T3) + (T2)(T4)
T6 = — (T2)(T3) + (T1)(T4)
7 =x - X
i h|
=y -V, __J
1 J
an_ . )
Bl = 9Tl = 1] o5 8 - 1] sin 6
b b i
k k k
13 an
aT2 ij . i
TB2 sin 6 *+ J cos 6
3 b
k k k
3t . on, (B.4)
83 = 913 = 31 cos 6, - I sin 6, >
J J
k k k
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- 13 an
T4 ji ji
TB4 = = Il gine + _Jt cos 8
3b b i 9 h|
] kk K
TB5 = (TB1)(T3) + (T1)(TB3) + (TB2)(T4) + (T2)(TB4)
TB6 = — (TB2)(T3) - (T2)(TB3) + (TBL)(T4) + (T1)(TB4)
9E . ani. ag.i an_i
The partial derivatives __*J J J and _J* in Eq. B.4
wo o w T wm s

will take on non-zero values only if the design variable bk is related

to location of the tramnslational joint connecting bodies i and j.

B.2 Derivatives With Respect To Design Variables Only

v Consider now each of the two types of joints separately.

» B.2.1 Revolute Joint
From Eqs. 2.10 the derivative of constraint equations with respect

to design variables could be written as

3d
a_bx" = RBl - RB3
k (B.5)
9
_ Y = RB2 -~ RB4
b
k

where RB1, RB2, RB3 and RB4 are defined by Eq. B.2

B.2.2 Translational Joint
From Eqs. 2.13 and 2.16, the derivatives of the constraint
equations for the translational joint with respect to design can be

written as
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3¢ )
= (TB1)(U -U ) + (U -x )(TB1-TB3) +
ab i 3 i i
Kk
(TB2) (vi-vj) + (V,-y,) (TB2-TB4)
(B.6)
24,
—— = (TB1)(V -y, ) + (U_-x_)(TB4) -
) 373 i'd
Kk
(TBZ)(Uj—xj) + (V, -y, ) (TB3) _J

where TBl1, TB2, TB3 and TB4 are given by Eqs. B.4 and U , U , Vi and
1 J
V are given by Eqs. 2.l4.
J

B.3 Derivatives With Respect To State Variables

B.3.1 First-Order Partial Derivatives

B.3.1.1 Revolute Joint

From Eq. 2.10, the nonzero first-order partial derivatives of

equations of constraint for the revolute joint can be written as

ad )
b:4

X
i

w " 7 (8.7)



Q
‘4'9-

3¢

_—

a6
j

R1

- R3

B.3.1.2 Translational Joint
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From Eqs. 2.13 and 2.16, the nonzero first-order partial derivatives

of the equations of constraint for a translational joint can be written

as

a¢n

ox
i

Tl

T2

- (T2)(T7) + (T1)(T8) - T6

- T1 -

- T2

(B.8)



"8

a0

J

B.3.2.l

T6

- T5

T5

B.3.2 Second-Order Partial Derivatives

Revolute Joint

Differentiating the derivatives in Eq. B.7 once with respect to

_

the state variables gives the following nonzero second derivatives:

[

- R1

R3

- R2

R4

(B.9)
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. B.3.2.2 Translational Joint

Differentiating the derivatives in Eq. B.8 with respect to state

variables gives the following nonzero second derivatives:

n - T2

n T2

]

=]
|

= - T2

- (T1)(T7) - (T2)(T8) + T>5

"

T5

121
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B.3.3 Third-Order Partial Derivatives

B.3.3.1 Revolute Joint

Differentiating Eq. B.9 once with respect to state variables gives
the following nonzero third derivatives:

3

3¢

X =R2
3

3 > (B.11)
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B.3.3.2 Translational Joint

Differentiating Eq. B.10 once with respect to state variables gives

the following nonzero third derivatives:

=1

=}
0

T2
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3 ¢

2
36 39

3 ¢
. (T2)(T7) - (T1)(T8) + T6

98

I ¢

36
j > (B.12)

o ¢

T5
a0

3 ¢
0

2
36 30

3 ¢

2
30 36

3 ¢
8

3
a9




125

B.4 Cross Derivatives With Respect
to Design and State Variables

B.4.1 Second-Order Cross Partial Derivatives

B.4.1.1 Revolute Joint

Differentiating Eqs. B.7 once with respect to design variables the

following nonzero second-order cross partial derivatives result:

9 )
3 ¢
X = - RB2
36 b
ik
2
3¢
x = - RBl
36 ab
i k
.2
3 ¢
y = - RB4
36 ob
ik
82 5 (B.13)
¢
J = - RB3
36 ob
i k
2
3 ¢
o = - TB5
36 3
i
32¢
® =185
36 b
j k _—J
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B.4.1.2 Translational Joint

Differentiating Eq. B.8 with respect to design the following

nonzero second-order cross partial derivatives result:

—
2
3 ¢
. _ =rTBI
9x 9b
i k
2
3 ¢
.0 =1TB2
dy db
1
2
’ a¢
n = - (TB2)(T7) - (T2)(TB7) + (TBl)(T8)
36 b '
ik + (T1)(TB8) - TB6
2 (B.14)
3 ¢
B =-17Bl
Bx.ab
R
2
3¢
. =-17TB2
dy db
j k
2
3 ¢
B =1TB6
36 b
h|




B.4.2 Third-Order Cross Partial Derivatives

o B.4.2.1 Revolute Joint
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Differentiating the second-order derivatives in Eq. B.9 once with

respect to design gives the following nonzero third-order cross

partial derivatives:

3
3¢
X

- RB1

2
a8 b
i k

3
9 ¢
%X = RB3
’ 2

36  9b

ik

3

3 ¢
y
2

36 3b
i k

]

- RB2

3
3¢
—J__ = RB4

2
96 9b —
j k

B.4.2.2 Translational Joint

(B.15)

Differentiating the second-order derivatives in Eq. B.10 once with

respect to design gives the following nonzero third-order partial cross

derivatives:
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